{
"cells": [
{
"cell_type": "markdown",
"id": "b3e1bd53-dc31-489d-8245-33e73a31c1f8",
"metadata": {
"tags": [
"remove-cell"
]
},
"source": [
"# Latex Headers\n",
"\n",
"$$\\newcommand{\\ket}[1]{\\left|{#1}\\right\\rangle}$$\n",
"$$\\newcommand{\\bra}[1]{\\left\\langle{#1}\\right|}$$\n",
"$$\\newcommand{\\braket}[2]{\\left\\langle{#1}\\middle|{#2}\\right\\rangle}$$\n",
"$$\\newcommand{\\adagger}[0]{\\hat{a}^{\\dagger}}$$\n",
"$$\\newcommand{\\ahat}[0]{\\hat{a}}$$\n",
"$$\\newcommand{\\bdagger}[0]{\\hat{b}^{\\dagger}}$$\n",
"$$\\newcommand{\\bhat}[0]{\\hat{b}}$$\n",
"$$\\newcommand{\\cdagger}[0]{\\hat{c}^{\\dagger}}$$\n",
"$$\\newcommand{\\chat}[0]{\\hat{c}}$$\n",
"$$\\newcommand{\\ddagger}[0]{\\hat{d}^{\\dagger}}$$\n",
"$$\\newcommand{\\dhat}[0]{\\hat{d}}$$"
]
},
{
"cell_type": "markdown",
"id": "6ed56e87-9b66-4ca5-8295-fc5ca3e94e3b",
"metadata": {
"incorrectly_encoded_metadata": "tags=[\"remove-cell\"] jp-MarkdownHeadingCollapsed=true jp-MarkdownHeadingCollapsed=true tags=[] jp-MarkdownHeadingCollapsed=true",
"tags": [
"remove-cell"
]
},
"source": [
"# Cell Width Adjust\n",
"\n",
" - Execute the code below to adjust the width of the cells when editing. \n",
" - These cells will not be published to the book and are for editing convenience."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d066c0df-aa5c-47f7-997b-1ffce7287a16",
"metadata": {
"tags": [
"remove-cell"
]
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"width = 70 #Width as a percentage of the screen\n",
"\n",
"from IPython.display import display, HTML\n",
"display(HTML(\"\"))\n",
"display(HTML(\"\"))\n",
"display(HTML(\"\"))"
]
},
{
"cell_type": "markdown",
"id": "bcdff4e6-8251-4c63-9061-40ac42497a11",
"metadata": {},
"source": [
"(content-t3e1-extras-homodyne-detection)=\n",
"# EXTRAS -- Homodyne Detection\n",
"\n",
"In the lab we explored single-photon interference and the Hong-Ou-Mandel effect. Here we build on several of the core concepts introduced in the lab, such as beam-combining and interference, to explore homodyne detection of quantum fields. We will then show how one can use homodyne detection in combination with squeezed states to make distance measurements with extremely high sensitivity."
]
},
{
"cell_type": "markdown",
"id": "c094f536-68e3-4e02-9671-3ff020c1435b",
"metadata": {},
"source": [
"## Homodyne Detection"
]
},
{
"cell_type": "markdown",
"id": "d7d865a1-cf3d-4598-b5d6-6fc66092b200",
"metadata": {},
"source": [
"Let's consider a configuration in {numref}`homodyne-detection-setup`. This is similar to the one used to demonstrate the Hong-Ou-Mandel effect, but with a few key changes. First, we can drive on input of the beamsplitter with a coherent state $\\ket{\\alpha}_a$. Second, we let the second input be an arbitrary state $\\ket{\\psi}_b$. Third, instead of examining coincidence events, we rather examine the subtraction of the photocurrents between ports $d$ and $c$. This configuration is shown pictorally below.\n",
"\n",
":::{figure-md} homodyne-detection-setup\n",
"\n",
"\n",
"Experimental setup for homodyne detection. \n",
":::\n",
"\n",
"Given all inputs have the same frequency, this scheme is referred to as a balanced homodyne detection scheme. It allows us to measure the field observable $B^{(\\theta)}$ of the state $\\ket{\\psi}_b$. Let's see how.\n",
"\n",
"```{note}\n",
"Note that we have again used the convention of labeling all operators with the letter corresponding to the mode label for convenience and clarity. Thus $B^{(\\theta)}$ corresponds to the average observed field of the state in port $b$. \n",
"```\n",
"\n",
"First note that as a result of the beamsplitter\n",
"\n",
"$$ \\chat = \\frac{\\ahat + \\bhat}{\\sqrt{2}} $$\n",
"\n",
"and\n",
"\n",
"$$ \\dhat = \\frac{\\ahat - \\bhat}{\\sqrt{2}}. $$\n",
"\n",
"We then find that we can use these relations to define an operator that represents the difference current between the detector in path $d$ and the one in path $c$. We can do this by assuming that the detectors are 100% efficient, and thus the current would be directly proportional to the number of photons incident on each one.\n",
"\n",
"$$ \n",
"\\hat{I}(\\theta) \\propto \\hat{N}_c - \\hat{N}_d = \n",
"\\frac{1}{2} \n",
"\\bigg \\lbrace \n",
"(\\adagger + \\bdagger)(\\ahat + \\bhat) - \n",
"(\\adagger - \\bdagger)(\\ahat - \\bhat) \n",
"\\bigg \\rbrace\n",
"$$\n",
"\n",
"After a bit of simplfication, we find that \n",
"\n",
"$$ \\hat{I}(\\theta) \\propto \\adagger\\bhat + \\bdagger\\ahat. $$\n",
"\n",
"If we then take the input state to be $\\ket{\\alpha}_a\\ket{\\psi}_b$, we have that the average current is expressed as\n",
"\n",
"$$ I(\\theta) \\propto \\bra{\\psi}_b \\bra{\\alpha}_a \\adagger \\bhat + \\ahat \\bdagger \\ket{\\alpha}_a \\ket{\\psi}_b = |\\alpha|\\bra{\\psi}_b \\bhat e^{-i\\theta} + \\bdagger e^{i\\theta} \\ket{\\psi}_b $$\n",
"\n",
"where we have taken $\\alpha = |\\alpha|e^{-i\\theta}$.\n",
"\n",
"Note that this means that \n",
"\n",
"$$ I(\\theta) \\propto 2 |\\alpha|B^{(\\theta)}, $$\n",
"\n",
"meaning that the measured current can be directly related to the field in B in the quadrature defined by $\\theta$. One can simply scan the phase $\\alpha$ (for example by inserting a wedge into the path of $a$) to measure the average field in in $b$ for all relative phase delays. \n",
"\n",
"Beyond mapping the average field, we can also examine the noise. To do this, we then need something to correspond to $\\hat{I}^2$. \n",
"\n",
"$$\\hat{I}^2(\\theta) \\propto (\\adagger \\bhat + \\bdagger \\ahat)^2. $$\n",
"\n",
"Again, after some algebra, we wind up finding that \n",
"\n",
"$$ \\langle \\hat{I}^2(\\theta) \\rangle \n",
"\\propto \n",
"|\\alpha|^2 \\bra{\\psi}_b e^{i 2 \\theta}\\bhat\\bhat + 1 + 2\\bdagger\\bhat + \\bdagger\\bdagger e^{-i2\\theta} \\ket{\\psi_b} + N_b, $$\n",
"\n",
"but, note, this is nothing more than\n",
"\n",
"$$ \\langle \\hat{I}^2(\\theta) \\rangle \n",
"\\propto \n",
"4 |\\alpha|^2 {\\hat{B}^{(\\theta)}}^2 + N_b$$\n",
"\n",
"Then remember that the noise is simply defined by the standard deviation of the output current, which is\n",
"\n",
"$$ \\Delta I(\\theta) = \\langle \\hat{I}^2 \\rangle - I^2 \\propto 4 |\\alpha|^2 \\Delta B^{(\\theta)} + N_b $$\n",
"\n",
"This is a really interesting set of results, so let's think about them a bit. Basically, the signal $I$ is related directly to the field observable of the state in port $b$ for any quadrature defined by $\\theta$. In fact this state information has been enhanced by a factor of $2|\\alpha|$ due to the large field of the coherent state. The the noise of the differential current is simply the noise of the field observable of the state in port $b$ enhanced by a factor of $4|\\alpha|^2$, with an extra contribution of $N_b$, the number of photons in the state in port $b$. Note that if we are dealing with few-photon states, then this extra portion $N_b$ can be safely ignored. This means, **balanced homodyne detection provides all information about the fields in port $b$**. \n",
"\n",
"Let's see what happens when we inject a squeezed state into port $b$.\n",
"\n",
"```{note}\n",
"Clearly, there is an advantage to having a high intensity coherent state $\\ket{\\alpha}$. However, one should note that there are technical limitations here, in particular is detector saturation. As with any photodetection scheme, there is a limit to the average photon rate that can be detected by a given detector. There are also bandwidth limitations to be considered. These traditional limitations of optoelectronics still apply and must be considered. As with all quantum engineering, there is still plenty of classical engineering to be taken into account!\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "69185bb9-eaa9-48be-b51d-0907706e9874",
"metadata": {},
"source": [
"## Homodyne Detection with Squeezed Light\n",
"\n",
"We know from the basics section on {ref}`sec:quantum-optics-basics:squeezed-states` that squeezed light exhibits reduced field fluctuations along a particular quadrature. We also now know that Homodyne detection can measure the field observable at input port $b$ along any quadratudre defined by the phase of the coherent state $\\theta$. \n",
"\n",
"Let us start by referring back to the simplified squeezed state we had discussed in the basics section on {ref}`sec:quantum-optics-basics:squeezed-states`. \n",
"\n",
"$$ \\ket{\\psi_s}_b = \\sqrt{1 - s^2}\\ket{0}_b - s\\ket{2}_b.$$\n",
"\n",
"From our prior analysis we know that the average field is zero for this squeezed state, thus\n",
"\n",
"$$ I(\\theta) \\propto 2 |\\alpha| B^{(\\theta)} = 0,$$\n",
"\n",
"and that the current noise can be expressed as\n",
"\n",
"$$ \\Delta I(\\theta) \\propto 4 |\\alpha|^2 {\\hat{B}^{(\\theta)}}^2 + N_b\n",
"$$ \n",
"\n",
"which, for our squeezed state is \n",
"\n",
"$$ \\Delta I(\\theta) = 4 |\\alpha|^2 { \\bigg \\lbrace 1/4 - s \\sqrt{\\frac{(1 - s^2)}{2}} \\cos(2 \\theta) + s^2 \\bigg \\rbrace }^{1/2} + N_b $$\n",
"\n",
"As noted above, for a large enough $|\\alpha|$, we can ignore $N_b$ here.\n",
"\n",
"Let's now plot $\\Delta I(\\theta)$ given $s = 0.3$ (squeezed state) and $s = 0.0$ (vacuum state -- no input)."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "624bc61f-424f-4bce-9572-020bdbe0d6ec",
"metadata": {
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAJWCAYAAADhgQvTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACZ4klEQVR4nO3deZxkV1k//s+pvWvr7qrqZfYlM5lJQjIJTAgE+CYhYSdRASGyg7KIiGyKImoUXBD8iiAqoF+jgBp/7CABMYQYICxJSEKWmUxmX3qrqu6ufT+/P27dqp6ZXqq67n4/79drXsl0VffcqTP33uc+5znPEVJKEBEREZH1ecw+ACIiIiLqDQM3IiIiIptg4EZERERkEwzciIiIiGyCgRsRERGRTTBwIyIiIrIJn9kHYIRUKiW3b99u9mEQERERrem+++5LSynHlnvNFYHb9u3bce+995p9GERERERrEkIcX+k1TpUSERER2YSpgZsQ4k+FEEeFEDkhxKwQ4gtCiK2rvP/5QohHhBBlIcTDQojnGnm8RERERGYyO+P2WQCXSynjALYDOAHgP5Z7oxBiJ4AvAfhzAMPt/35ZCLHdkCMlIiIiMpmpgZuU8oCUcrH9WwGgBWDPCm9/HYD7pJSfk1LWpJSfB3B/++tEREREjmf64gQhxCsB/D2AOIAGgHev8NZ9AO4752v3t79ORERE5HhmT5VCSvlvUsphABsA3ALg5yu8NQZg8ZyvLUAJ+M4jhHizEOJeIcS9c3NzGh0tERERkXlMD9xUUsppAJ8B8A0hRGKZt+Sh1LYtNQIgt8LP+7SUcr+Ucv/Y2LKtUIiIiIhsxTKBW5sPQATAxmVeexDAk8/52hXtrxMRERE5nmmBmxDCI4R4uxBivP37zQA+CeAYgAPLfMu/AtgvhPgVIYRfCPErAJ4C4F+MOmYiIiIiM5mdcXshgIeFEEUAPwZQAnCDlLIhhHiVEKKgvlFKeRjASwB8AMr06AcA/JKU8pjxh01ERERkPNNWlUopW1ACt5Ve/zyAz5/ztW8B+JbOh0ZERERkSWZn3IiIiIioRwzciIiIiGyCgRsRERGRTTBwIyIiIrIJBm5ERERENsHAjYiIiMgmGLgRERER2QQDNyIiIiKbYOBGREREZBMM3IiIiIhsgoEbERERkU2Ytlcp2d/phTL+4XuH8dNjWVwwFsWvX3sBnrRp2OzDIgMcnM7jY//zOI6mi7hi6wh+89m7sXFkyOzDIgN8/1Aan/rfw8gUarhmzxh+47pdiAZ5K3G6Vkvii/efwm0/PYl6S+KmfRvx+qu3w+sRZh+a6zDjRuvy8OlF/MLffh+3/fQkxuMhfP+JNH7p736Abz08bfahkc6+8+gMXvTxu3HPkQw2DIfwxftP44UfvxuPnsmZfWiks3+46zBe/U8/xpG5IhKRAP7+e4dx099+H+lC1exDIx01mi289wsP4re/8BDylQa8AvjgNx7F6//5J6g2mmYfnuswcKO+zRdreNO/3ouA14Nv/taz8K9vfCru+u1r8aRNw3jHv/+MN3AHe/RMDr/xb/fjko1xfPc91+Kf3/BUfOu3noWw34vX/r+fIFusmX2IpJP/emgKf3H7Ady4byO++95r8Llfuwr/9mtX4cxCGb/6L/ei0WyZfYikk4/fcQhfuv803nXDhfjWO5+FL/761fizX7oUdx9K4/e//LDZh+c6DNyob7d8/RGkC1V86jX7sWs8CgAYCQfwj6/dj+GwH++67QFexB2o0Wzhd774IOIhP/75DU9FIhIAAOwci+IfX3clFss1/NHXHjH5KEkP6UIVH/jKz7Fv8zD++uX7EPR5AQBX70rhIy/bhwdPLuAzdx81+ShJDw+dWsDf3vkEXvLkTfitG3ZDCAEhBF551Va8/bpd+MJ9p/C9g7NmH6arMHCjvjx4cgFffeAM3vJ/LsClm8+uZ0tGg/jgL1yCgzN5fOG+UyYdIenli/efwsOnc/jjmy7pBG2qizfG8bZrd+HrD57Bz07Mm3SEpJdP3vkEcpUGPvrL++Dznn3bePFlG/Dciyfw8TsOIcMpU0eRUuLPvvkYRsMB/PFNl5z3+m9evws7xyL4468/imZLmnCE7sTAjfryf7/zOJKRAN5yzc5lX3/eJZO4YusIPvY/h1BrMOvmFLVGC5/47hPYt3kYL7x0ctn3vPn/7EQiEsD//c7jBh8d6WlqsYzP/+gEXvbkzdg9ETvvdSEEfuf5e1FtNPHpu4+YcISklx8ezuBHR7L4zWfvQizkP+/1oM+L337uHhxNF/GNh86YcITuxMCNevbEbB53PT6H11+9fdmTGFAu4u+4fjemcxXc/vCUwUdIern94Smcmi93pkqWEwn68KZn7cTdh9I4MM06R6f47D3H0Wi18PZn71rxPbvGo3jxZRvxuXuOo1BtGHh0pKd/+v5RpKJB/MpVW1d8z/MumcSFE1H8/fcOQ0pm3YzAwI16dusPjyHo8+CVq5zEAHDN7jHsSEVw6w+PGXNgpLvP/+gEtiXDuPbC8VXfd/OVWxD0efDZe44bdGSkp2qjidt+ehI3XDSBLYnwqu99/TO2o1hr4is/O23Q0ZGejqWLuPPgLF511dZOTeNyPB6B11+9Awem8/jZyQXjDtDFGLhRT6qNJr7+4BRe8KRJJKPBVd/r8Qi86qqt+NmJBTw+kzfoCEkvT8zm8ZNjWbzyqVvhWaNn02gkgBv3bcRXfnYa5RrbBNjddx6dQaZYw6uftm3N916xZQQXbYjj3358woAjI739f/edhADWfFAHgJsu34hIwMuxNwgDN+rJ/z6exmK5jl+4YlNP7/+FyzfB6xF8+naArz04BSGAX3pyb2P/0idvRrHWxP88NqPzkZHevvHgFMZiQTxjV2rN9woh8PL9m/HoVA6H+MBma62WxFcfOINn7h7DRDy05vujQR9u3LcRt/98CpU6H9j0xsCNevLVB04jEQngmT1cwAFgLBbEM3el8NUHzrDuwea++fMpPHV7AuOxtS/gAPDUHQlMxIP46gMsVrazQrWBOw/O4kWXbui5O/6LLtsAjwC+/hDrW+3s/hPzODVfxi9evrHn77lx30YUa022BjEAAzdaU6HawP88NoMXXboBfm/v/2RefNkGnF4o4xE25LWtx2fyeGK2gBddtqHn7/F6BF582Ubc9fgsC9Vt7I7HZlBttPDiPsZ+PBbC03YmucLQ5r79yDQCXg+ee8nyK8iXc9WOBJKRAIN2AzBwozXd/fgcKvVWXzdvALhu7ziEAO54jE9gdvVfDynTpM9/Uu8XcAC44aIJ1JsS3z+U1unISG/feGgKk/EQnrx1tK/ve94lkzgyV8TRdFGnIyO93XFgFlftTPS1B62vHeh978AsW0HpjIEbremux+cQC/mwf1t/F/BUNIgrtozguwdY62RX//3oDK7c1vs0qWr/9lHEQj7ceYBBux1VG018/1Aaz71kYs0FKee6bo+y8phTZvZ0NF3Ekbkibrhoou/vvW7PGIq1Ju49ntXhyEjFwI1WJaXE9w7O4Vm7U+d1TO/F9RdN4MFTi5jNV3Q4OtLTXL6Kx6ZyuGbPWN/f6/d68H92j+G7B2fRYkd127nv2DzK9SauubD/sd+aDGPnWAR3HpzT4chIb3e0FxU9e+/qrX+Wc/WuFPxegbse59jriYEbrerxmQKmc5V1XcCB7snPzIv9/OAJZZrzWbt7W5ByrmfvHcdcvsoaRxu669Ac/F6Bp+1Mruv7r9szjh8dyaBUY42j3dzx2CwunIiu2bdvOdGgD/u3JXAXg3ZdMXCjVanTHdes0Xh1JXsnY5iMh/D9JzJaHhYZ4O5DaYyG/bhk4/Dab17GtXvGIASnzOzo7sfTeMq2UUT6qHFa6to9Y6g1Wvghz3tbKdeauO/4PK7ds77rPaCM/YHpPKYWyxoeGS3FwI1WdfehNPZMxDA53F+Nk0oIgaftTOBHRzJsC2IjUkrcfWgOV+9K9dwK4lzJaBB7JmL48VHWu9jJXL6KR6dyeNbu9WXZAaUlTMDnwT1HGLjZyc9OzKPWbOHp68y0AuiUVtz9OBcm6YWBG62o3mzhvuPzePoF6z+JAeCqnUnM5as4wlVmtnFotoDZfBXP6rFv30qetjOJ+47Po97kKjO7+OFh5Yb7fwYI3II+L67YMoKfMGi3lR8dycAjlMVF67VnIobRsB8/Ocax1wsDN1rRI2dyKNebuHJ7YqCfo9bJ/IhP37bx4/ZYXX3BYIHbU3ckUK438fPTi1ocFhngp8eyiAZ9uHhjfKCfc9WOBB45s4h8pa7RkZHefnQkiydtGkYs5F/3zxBCYP/2BH7KwE03DNxoRT85qty8r9yx/qcvANieDGMiHsSPj/BEtov7js9jLBbElsTQQD/nqTuUoJ9jbx/3HpvHFVtH1j1FrnrqjiRaUvm3RNZXqTfxwMmFdS9IWeqqHQkcz5Qwm2M3AT0wcKMV/eToPLYnw3338DqXEAJX7Uiyzs1G7j0+j/3bRiHEYDfvVDSIXeNR/Pgos612sFiu4+BMfuAsOwA8edsIfB7BzItN3N+ub3vazsHHXv33w+lSfTBwo2W1WhL3Hs9qcgEHlMzLbL6Kk1muNLK6mVwFp+bLeEqfDZdXctWOBO49No8m+7lZ3v0n5iEl+m62vZxwwIdLNw+zzs0m7j02DyGAp2wb/Jp/ycY4wgEvfsqx1wUDN1rWE3MFLJTquHKHNoHb5VtGAAA/O8lpE6u795gyRvs1Ctqfsm0UhWoDh+cKmvw80s99x+bh9QhcvnVEk5/31O0JPHhykVsg2cADJxdwwVgUw0Prr29T+bwePHnrKH5yjNd7PTBwo2U9cGIBADTLuuydjCHk9+DBkyxSt7r7js8j5PfgkgGL01X72kH7AycXNPl5pJ+fHsu2syXr6992rn1bRlBrtnBgmk2YrUxKiQdPLnQesLXw5G2jODidYxNmHTBwo2U9eGoBsaAPO5IRTX6ez+vBpZuG8QAzbpZ334l5XLZ5BP51bHG2nB3JCGIhHx5k4GZpzZbEQ6cW+95UfjVq0M6xt7ZT82VkijVNA7d9m4fRkuDOKTpg4EbLeujUIi7dPNz3BtOruXzLCB4+k+O0iYXVGi08NpXT9ALu8Qjs2zyCB08taPYzSXtH5goo15u4bPP6dspYzsbhEFLRAB48xUy7lanZcC3P+0vb/44YtGuPgRudp9po4sB0DpdtHtH05+7bMoJao4WD03lNfy5p5/GZPGqNFi7dpN3NGwD2bRnGgak8KvWmpj+XtPNQO7jScuyFELhs8wgeYtBuaQ+cXEDQ58GeyZhmP3M8FsKG4VDn3xVph4EbneexqTzqTYl9Gj55A92nOU6XWtfDp7W/eQPAvs0jaLQkp00s7OenFxEOeLFzLKrpz923eQSHZgsoVFnrZFUPnFzAkzYNa1Yeobps8zCDdh0wcKPz/Lx9ol2mYdocADaNDHHaxOJ+fnoRsZAP25JhTX/u5VygYHk/P72IJ20cHrjx7rku2zIMKbsPBWQtzZbEI2cWsU/jGRYAuGzzCI5lSlgscfcMLTFwo/M8eGoRyUgAG9e5sfxKhBC4eOMwHmXWxbIebt+8B228e67xeAgT8SAe4c3bkhrNFh45s4gnaZxpBdAJCJh5saaj6QIq9dbAW5wtRx17bnmnLQZudJ6HTysLE7S+eQPAxRviODSb5wIFC6o3W3hsOt8pKtbaxRvieHSKQbsVPTGn3Ly1XJigSrQfAvnAZk2PTik1xxdt0K6+TaWWXDBw0xYDNzpLrdHC4bkCLtqg/dMXAFy8MY56U+KJWTZjtRp1YYIeWRcAuGhDHE/MFlBtcIGC1fy8Xb6g59g/NsVFSVb02FQOPo/ArnFtaxsBYDjsx6aRITzGBzZNMXCjsxxJF1BvSuzVcHXRUhe3A0JmXqxHXTjwJB2mTAAlaG+0GLRb0YHpPEJ+D3aktOnbeK6LNsRxeK7AVcUW9NhUDrvGowj6vLr8/L2TMTZg1hgDNzrLgU7aXJ+b945UBCG/h9MmFnSwffPeplHT5XOp/6Y49tZzcDqP3eMxzRcmqC7awKDdqh6byul2vQfUoL3IoF1DDNzoLI9N5+D3Ct2evL0egb2TcTw6xZoHq3l8Rt+b9/ZkBEN+L7OtFnRgOq9pD69zqfVTHHtryRZrmMlVOzMherhoQxxNBu2aYuBGZzk4nceu8Zjm/XyWunhjHI+eyUFKqdufQf3T++bt9Qjs3RBjvYvFZApVpAtV3cojAGBbO2jn2FuLOh76ZtwYtGuNgRud5cBUHhfpeAEHlDq3XKWBM4sVXf8c6l22WMNcvoo9E/qO/UUbGLRbjbqTid5B+55JBu1Wo5Yt6LGiVLUtqZTHHODiFM0wcKOO+WIN07kK9up4EgPAhe3g4NAMT2SrMOLmDQAXTcaQqzQwxaDdMg7OGDT27ZWlDNqt47GpHMZjQSSjQd3+DCVojzNo1xADN+o40Ll565c2B4Dd7WXnh2ZY82AVjxt0897dDtpZ72IdB6fzSEQCGNPx5g0oqwsXy3XM5au6/jnUu0d1XpiguniDsrKUQbs2GLhRh7pkW++p0tFIAKloEIdmmXGzigPTeYyE/RiP6XvzVntFHWLgZhkHpvPYMxHTpeH2Urs59pbSaCo9O/WeYQGA3eMxzJfqyBRruv9ZbsDAjTo6T94637wB5SLOC7h1PD6Tx4UG3LyTkQBGw35m3Cyi1ZJ4fEbfRSkqNWjn2FvD8WwJ9abE7nGOvd0wcKOOxwx68gaA3RNRPDFTYOrcAqSUeHw6r+uqQpUQArvHY3iC2VZLODVfRqnWNCRwG4sFEQv5mGm3CDWI0mPHhHMxcNMWAzcCoNy8j8wWsHtC/5MYUDJu+WoD0zkWqZvt9EIZ+Wqjs2hEb7smonicQbslqOURRgRuStAe5c3bItRxuGBMn56dS20YDiES8HLsNcLAjQAAc/kq8tUGLhgzJnDbNa6uLOWJbDZ1YYIRGTdACdoXy3WkC6x3MZtarmBY0M7AzTIOzxYwGQ8hFvLr/mcJIXABx14zDNwIAPDEnPr0ZUzgduEEC5WtQr2YGlHrsvTP4ZSZ+Q7PKTfvaNBnyJ+3ezyGdKGGeRapm+7wXMGQaVLVrjEGbloxLXATQnxYCPGIECInhDgjhPiMECKxxve8VwhxWAiRF0IcEkK8zajjdbrDc0UAwAXj+qfNASAZDSIRCbCXmwUcmSsiGQlgOKz/kzeAznQ8L+LmOzJXxE4DpspUnVqnOY69maSUODxXNDZwm4hiOldBvlI37M90KjMzbk0ArwaQBLAPwGYA/7zSm4UQNwH4YwCvklLGALwWwEeEEM8x4Fgd78hcAeGAF5PxkGF/5i6uLLUEo2/e47EgYkEfp8lNpty8C6YEbhx7c03nKihUG4bUt6l2tWdz1CQBrZ9pgZuU8v1Syp9JKetSyjkAfwvg2lW+ZReAB6WUP2p//z0AHoIS9NGADs8VccFY1JAVpard41EcmmEndbMdSRewM2Xck7cQArsmopwqNVm6UEO+0jB07DeNDGHIzyJ1s3UWJhiZcesE7TzvB2WlGrfroQRiK/kPAHEhxDOEEB4hxLMAXAjgW4YcncMdni0Y+vQFKIFbrtLALDupm0ZdJLDDhLHnzdtcR+aMv3l7PAIXjEcYtJvMyFYgqq2JMAJeD6fJNWCJwE0I8VIAbwLwW6u8bRbAFwDcCaDW/u8fSSkfXuFnvlkIca8Q4t65uTmtD9lRyrUmTi+UDVuYoNrZ/vOOMHVuGvXmvTNldODGInWzHUkr553RY79rLIrDDNpNdXiugHjIp/s2Z0v5vB5sT4U59howPXATQvwygM8AuElKef8qb/0DAK8EcDkAP5Qp0ncJIX51uTdLKT8tpdwvpdw/Njam8VE7y5G08U/eALCjfcM4lmHgZhY1aN5pcNCujv1Rjr1pDs8WEPR5sGlkyNA/d9d4FGcWKyhWG4b+udT1xKyyotTI0hiA7WC0YmrgJoR4A4BPAbhRSnnnGm9/CoAvSykflYpHAHwFwIt1PkzHO9y5eRv75L1xZAgBrwfH0rx5m+VIugCvR2BrImzon7tdDdo59qY5ki5iRyoCj8fYm/eOdk0dH9jM88SssStKVbvGojiRLaHaaBr+ZzuJme1A3gHgowCeJ6X8QQ/f8gMAvyiE2N3+/osA/CKA1bJ01IMjcwUIAWxPGhu4eT0CW5NhHOXN2zRH5opK7YnP2EvB1kQYHsHAzUxH5gqGl0cAwLak8pBwPFMy/M8mIF+pI12oGp5lB5QHtpZUtlqj9TMz4/Y3AOIA7hRCFNRf6otCiFct/T2AjwD4MoDvtL/+bSgZt78w8Jgd6fBcEVtGwwj5vYb/2duTET55m+jIXNHwGicACPg82DQ6hKO8eZui2mji5HzZ8Cw70M228oHNHGrAbPSDOgBsa/+Zx3nNH4iZ7UCElNIvpYwu/bXk9c+f8/uGlPJ3pZTb2+/dKqV8j5SS3fwGdHjW2F5OS+0ci+BYpoRWiy1BjNZsSRzNGNvDbantyQgzbiY5kSmh2ZKmjH006MNYLMixN4kaMG9PGVseASypbU3zgW0Qpi9OIHNJKXE8U+ycUEbbnoyg1mjhzCJT50Y7s1BGrdEyZcoEUC7ix9JF9vEzQWenFLPGPhnhVKlJ1GyX0XWtADAa9iMW8jHjNiAGbi6XLtRQrDWxzYSTGOg+9R3jE5jhDpvUCkS1PRlBvtpAhi1BDKdmXcx6YNuWDHNFsUmOZUqYiAcRDhizP+1SQghsT0Y4TT4gBm4udyKrnEDbTLqAq13beRE3njpVZXTzXZUaNPDp23jHM8r+tLGQMfvTnmt7KoK5fBUFtgQx3PFM0ZT6NtX2FLOtg2Lg5nJqpsusjNtEPIghv5f1LiY4ni0hHPAa2oRzqe2sdzHN8UwJW5PmnPMAg3YzHU2XzA3ckmGcmi+h1miZdgx2x8DN5Y5nS/AIYPOoORdxIYQybcLAzXAnMiVsTYQNb8Kp2jw6BK9HMGg3wYlsybSHNaC7opElEsYqVBtIF6rYZsLCBNX2pNoShGO/XgzcXO54pqg0wjW4j9dSapE6Get4tmRKgbLK7/Vgy+gQp8kNVm00cWaxjK0mZl3UXm5sBWQsNcNp7lQp+/gNioGbyx3PlDoXUbPsSEVwIltCo8nUuVFaLYmTWfPHfjuDdsOdni9DSvPKIwAgEvRhnC1BDKcGS2ae92rQyFmW9WPg5nInsqVOU0SzbE9F0GhJnF5gSxCjzOarqDZapmbcgG4vN7YEMc7xrPk3b6AdtDPjZij18zbzmp+IBBALsiXIIBi4uViuUke2WDP1yRvoPvmfyDJ1bpROLyeTg/YdqQiKtSbmClVTj8NNTrSzLmYuTgCUXm5cmGKsY+kiUtEgokHjW4GohBDYnopw15QBMHBzsRMWSJsDwBYGbobrZF1MDtrVjN9Jjr1hjmfMXU2s2pYKI11gSxAjHcuUsMPEhQmqbckwM24DYODmYlZImwPARDyEgNeDk1lOlRrlZHs18abRIVOPY0tiqH08HHujnMgWTV1NrGLQbrzjmaLp13tAybSfmi+jzrrmdWHg5mJqoarZdU5ej8Cm0SGc5PJwwxzPlLBxZAh+r7mXALUNDW/exjmeMXc1sWoLx95Q5VoTM7mq6Vl2QBn7ZktierFi9qHYEgM3FzueKWIsFkTExHoH1ebRIV7ADXTcAitKASDk92I8FmTQbpBWS7YXJJk/9mqJxMl5ZluNoPZNM7u2EQA2dzLtPO/Xg4Gbix3PmNuEc6mtiTBPYgOdyBSxNWH+lAmg3MA5VWoMq6wmBpQNxyMBL897g5xqB8ibTS6PAJZkW/nAti4M3FzshMkNWJfakghjvlRHvlI3+1AcL1epY75Ut0TWBQC2jA5xYYpBrLKaGFBWF25JhNlB3yBqkLTFpF1yltowHILXI/jAtk4M3Fyq1mhhOlfBZqsEbp16F57IeuusJrbK2CfCmFpkobIRrLKaWLV5lNlWo5zMlhD0eTAWM3c1MQD4vB5sGA4x47ZODNxcanqxAimtkTYHlqww44msOzW7tcUiN+8to2G0JDC1wEJlvVllNbFqS0JZlMQGzPo7NV/GptEh01cTq7aMhjvTt9QfBm4upU5PWCVw28JiVcOon7EVipSBJYXKDNp1d3q+jMl4yPTVxKoto2GUak1kizWzD8XxTs6XLDFNqtqS4IK09bLG2UuG6xSqjljjRB4e8iMW8vFENsCp+TLiIR/iIb/ZhwKA/byMdGqh3GnBYgVcWWqcU/PlzgOyFWweDWM2X0Wl3jT7UGyHgZtLnVoowyOAyeGQ2YcCoF2oPBpmkboBTi+UsclCN+8Nw0PweQTH3gCn29NlVsFMuzHylToWSnWLBe3K2HO6tH8M3Fzq1HwJk/EQAj7r/BNQ6l14Euvt9HwZm0asc/P2egQ2jnDs9dZothckWSlwY1sIQ6gLQCw1VcqxXzfr3LXJUKcs9uQNdHu5sVBZP1JKnF4oW+rmDbDexQjTuQqaLWmpoD0S9CERCXBlqc7UmmYrTZWq0+TMuPWPgZtLnZ63Vq0LoJzI1UYLc/mq2YfiWLlyA4Vqw3qB2yj7eelNvUFa7YFty+gQx15nJzvNd61zzR+LBhHweXCKD2x9Y+DmQlacMgGYOjfCqQXls7VS1gVQgvZ0oYZitWH2oTjWaQvevAFgM3dN0d3JbAmRgBejYWssSAIAj0dg8wj3qF4PBm4uNLWoTJlYLXBTMwGn2c9LN5bNurSnTU4vcNpEL+pnu8EiC5JUW0bDOL1QRrPFEgm9KCtKw5bp4abazO3u1oWBmwupF/BNFmkFotrYzgKdZs2DbtTP1moZt00jSjDBwE0/p+ZLGIsFEfJ7zT6Us2xJDKHelJjN84FNL6fmS5Z7UAeUaXJm3PrHwM2FrLTZ8FLRoA/DQ36c4c1bN6cXygj5PUhEAmYfylnUoJ1jrx8rLkoBlo49Azc9SClxyoI1zYCSaV8o1VFgiURfGLi50Kn5EoQANoxYa8oEUC7izLroR20FYrUpk/GYsuk0Azf9WK0NjGoTg3ZdLZbrllyQBHSD9imOfV8YuLnQqfkyxmNBBH3WmjIBlIs4L+D6OW2xzvkqr0dgMh5i1kUnrZbEmYWK5WobgW7NHc97fXRLY6w39huHWSKxHgzcXMiKrUBUm0ZCrHHTkbJrgvUu4IByY+EFXB9zhSpqzZYlz/tYyI94yMfATSfqw9BGKwZunCZfFwZuLnRqwZqFqoCy2jFfbSBXqZt9KI5TqjWQLdYs+eQNABtHQrx566S7N7FVx36Iq8l1MrXYXk1swdKY8ViQJRLrwMDNZZotiakF6/VwU3FlqX5OW3RRimrjyBCm261qSFtqg1urZls3skRCN6cXygh4PUhFgmYfynl8Xo9SIrHIse8HAzeXmclV0GhJy7UCUbFQWT+nLFzrAig370ZLcucMHVi5zgloZ1t589bF1EIFG0ZC8HistSBJtWGYmfZ+MXBzGau2AlGpNxbWOmnvtEWb76o49vo5PV/GaNiPSNBn9qEsa+PIEBZKde6coYMzC2XLNV1eSsm2cpq8HwzcXMbqUyapaBABr4c3bx2cXijD7xUYj1nzIs5ebvqxah8vlRq0TzHrprmpxYolFyaoNo4MYWqxjBZLJHrGwM1lphaVJxurTpl4PAIbuLJUF6fny9gwPASvRadMNo6wLYReTi9Ys4ebqlPbysyLppotielcBRuHrTz2IdSbEukiSyR6xcDNZc4sKFMmVtv2Zim2hdCH1W/esZAfMbaF0JyUUmm+a9EsO8BGrHqZzSuLfSydcRtmS5B+MXBzmenFCjZY+OkL4AozvZyaL1n65g2oQTsv4FpaKNVRrjctffOeiAXhEcy2ak39PK3YCkTFEon+MXBzmTOLFUsXqgLKzXs2X0Wt0TL7UByj3mxhNl+19M0bYNCuB7U8YqOFz3uf14OJeIhBu8bULJaVM+3sJNA/Bm4uM71YtvTTF6AsnJBSyQ6SNmbzVUhp7Zs3wLYQepjOKZ/npOXHnkG71joZNwuPfXzIh3DAy6nSPjBwc5FyrYn5Ut3yU6XqE9iphZLJR+Ic04v2uXmzLYS2rLzl0VIbR4YYtGvszEIZsZAPsZDf7ENZkRCCQXufGLi5yHROuYBb+ekL6AYXMzk+gWlFnS6zS9DOthDamV6swOsRSEWt1zl/qY0jIUwtVNgWQkNnFiuWniZVMWjvDwM3F1FXbFk96zIZV45vilOlmplqZ12sPvZsC6G9qcUKJtp7QlrZppEh1JottoXQkNWb76o2Doc4VdoHBm4ucqZTpGztJ7BI0Id4yMcaNw1NLVYQCXgRD1mzc76KK8y0N50rWz5gB9gWQg9Wb76r2jgyhHShikq9afah2AIDNxexS50ToEzpMXDTjnrzFsLaWRe1LQQbMGtH2avSHjdvgEG7Vsq1JrLFmm0CN4AL0nrFwM1FzixWkIgELN18VzU5HOrU5NHgpmzQvw9Q2kJMxrnptFaklMrYx63/sMadM7Sl1olutHgXAYBj3y8Gbi4yvVjp1I9Z3YbhEGvcNDS9WLFFphUANowMcew1kis3UK43bTH2w0N+toXQkPo52uGBrTNNzvO+JwzcXOTMQtkWT18AMBEPIV1gE14tNNrNd+1QpAwoi1OYbdXGmU7Wxfo3byEENgwz26oVdeztsKpUfbDg2PeGgZuLTOdslHUZDkFKZa89GsxcoYpmS9pm7CeHQ5herEBKtoUYlFozZKuxZ9CuiTMLZQihPARbXcjvRSoaYBugHjFwc4lyrYkFGzTfVak3GharDq7bw836F3BAybiV603kKmzCOyi7jf1EPMT+jRqZWqggFQ0i4LPHbX4iHuL1vkf2GFEamJ0KVYFuXQZrnQbXybrE7RG0T7ABs2amF8vwegTGY3Y570OYzSsZYhrMdM76+1IvNRlnXXOvGLi5xJTNbt7MuGmns8m4bYJ2NmDWypnFCsZt0HxXNRkPodmSyBTYhHdQM7mKLaZJVRPDzLb2ioGbS6hFn3a5ecdDysbDvHkPbnqxjJDfg+Eh6+5XuJS68nmGYz8wO60mBrr1WKxzG9x0zj5dBADlvJ8v1dmEtwcM3FxCzVzZ5QlMCNEuVGax6qDUHm5Wb76rGo8re2ry5j24qUV7bHmkYqZdG5W6UtNsp6BdDTJnc8y2roWBm0ucWawgaZPmu6oNwyxW1YKd+vcBQNDnRSISYLZ1QJ3muzZZkAR0b94M2gejTjna5UEd6Na2cuzXxsDNJaYX7bFf4VKTcW57pQXl5m23sWe9y6BylQZKtaatxj4ZDcLnETzvB9SdYQmafCS928DArWcM3FzCbk/egHIiz3CF2UCaLYkZG/XvU00y2zowu/VwA9BeARvkzXtA6udnp0z7BGtbe8bAzSVsmXUZVlaYpbnCbN0yhSoaLWm7sWc/r8GpLYDs9sDG1YWD60yV2ui8j4d8GPJ7GbT3wLTATQjxYSHEI0KInBDijBDiM0KIxBrfMy6E+BchRKb9fQ8IITYadcx2Vak3sVi2V6EqwLYQWug2YLXXzXvDcAiZYg3VBleYrZfdmu+qJtmIdWDTi1WEA17Egj6zD6Vn3QVpHPu1mJlxawJ4NYAkgH0ANgP455XeLIQIAbgDQA3AHgAjAF4FoKD3gdqdukpnPGafegdgSWsAboOyblM2nC4DuMJMC1OLFXiEPc97Bm6DmWm3ArHLSnLVRDzIqdIemBa4SSnfL6X8mZSyLqWcA/C3AK5d5VteByVYe5uUMi2lbEkpH5FS5gw4XFubydtvhRHAjJsWpjvTZfYae64wG9zMorLlkc9rr4qYDcMhFGtN5Ct1sw/FtqZt1nxXNRlnxq0XVjqjrwfw0CqvXwfgUQCfak+VHhBCvNuYQ7M3Oy4NB4BEJICA18On7wFM5SrwewUSkYDZh9IXBu2Dm8nbb1EK0M0Os85t/ezWeFk1MRzCbK4KKbkgbTWWCNyEEC8F8CYAv7XK21IAngvgQQAboEyzvl8I8aoVfuabhRD3CiHunZub0/qQbWWmPd1kp6XhQLfmgTfv9ZvLVTEes+OUCVeYDWqmPfZ20y2R4DT5erRaErN5+2bcas0WssWa2YdiaaYHbkKIXwbwGQA3SSnvX+WteQCnpZR/I6WsSSnvBfA5AL+w3JullJ+WUu6XUu4fGxvT/sBtZDZXQcBnny2PlmJbiMHM5Cu2C9gBrjDTwmzOnmPPJryDyZZqqDclJjn2jmVq4CaEeAOATwG4UUp55xpvfwDAcvlT5lTXMNO+gNst6wK020LkeRKvl12zLlxhNphao4VMsWbPrAunSgdix/59qgmOfU/MbAfyDgAfBfA8KeUPeviWWwEkhRC/IYTwCiH2QVlV+iUdD9MRZnJVTNjw5g0AE7Egax4GYNesC8C2EIOYK9izPAIAQn4vhof8nT501B+71jQDSzJunCZflZkZt78BEAdwpxCioP5SXxRCvGrp76WUxwG8EMCvAcgB+AKAW6SUtxl83LYzY9N6B0C5+JTrTeSrDbMPxXbKtSZylQbGbTr2nCZfP/XmbdexV/Yp5s17PTq7Jtgw4zYWC0IITpWuxbTufFLKVeftpJSfB/D5c772PQBX6HhYjjSbq+KaC+335A0A4+2MwWyugnjIfjV6Zpq1aRsY1UQ8hNl8Ba2WhMdjv2l+M82qWRe7Ztq5c8a6zSxWIASQitrvmu/3epCKBtm7cw2mL04gfRWqDRSqDdvevNX6LDZi7d+MTRsvqzYMh1BvSmS4wqxvnbG34VQpwH5eg5jOKf37/Dbr36dSxp7X+9XYc2SpZ50nb5tewNXj5gKF/jkh4wawUHk9ZnIV+DwCibC9+vepJoZDSBeqqDdbZh+K7UznqrbaXP5ck8MhtgFaAwM3h+v0cLPplMl45+bNJ7B+2bV/n6oTtDNw65uymjho2ynmyXgIUgKzeZ73/ZpZtG9NM8Bsay8YuDmcmnWxa5FyNOhDJODlVOk62Ll/H9D9N8ubd/9m8xXbnvMAMDncrW2l/kznKp3Pz44mh0NYLNdRqTfNPhTLYuDmcDM2nyoF2MttvWbzStbFjv37AGAsqt68Gbj1a8bGbWCAJbWtDNr7Uqk3sViu23qqVK3JZaZ9ZQzcHG4mV0U44EU0aNoC4oGNx4N88l6HGZtuNK0K+DxIRAKdrDH1biZXtfXYqzdvBm79sXMPNxUz7Wtj4OZw6s3brlkXQHn65kncP7tnXQDlBs76xv6oWRc737yT0SA8ApjjA1tfuquJ7Tv2naCd5/2KGLg53Gy7SNnOJuJBzOQq3D2hT8pUqX0v4IDSkHOOGbe+zNq8DQwAeD0CyWiQD2x9msvbf+y72Vae9yth4OZwdt41QTURD6FSbyFX4e4JvSrVGshXGrbt46VitrV/MzZvA6MajzFw61dnMZqNA7fRcAA+j+DYr4KBm4NJKR0xXTYW4wqzfs3avA2MaiIexFy+ilaL2dZeOaHOCVADN57z/ZjNV+HzCIzatH8fAHg8AmPtPappeQzcHCxXaaBSb9n+Aj7BYtW+dfeqtHfQPh4LotGSmC9x94Re2b1/n2o8FuLNu0+zuSpSUfv271ONx4KYK3DsV8LAzcFmbb7RtIod9PunBrl2D9rZgLl/du/fpxqLBZEuVNFktrVnSv8+ewfsADAWC3GGZRUM3Bysu2uCvU/kbl8f3rx7NWPzTcZVLFTun1oeYeeV5ICSLW5JIFPked+rubz9F6MBytjPcYZlRQzcHMwptS6RoA/RoI837z7M5qsI+DyID9m3fx/AafL1mMlVbR+wA2wLsR5z+SrGHDD2Y9EgMsUa96pdAQM3B5vJO6POCVCb8PIC3qtZh2Rd1IUpfPrunRNWkgPoBCAc+97Umy1kijXHZNwAIM06t2UxcHOw2VwVsZAP4YC9sy6AMuXHGrfeOSXrEvJ7EQ/5OPZ9mM1VnfGwxmnyvqhBzpgTAjd1yzM+rC+LgZuD2X3Lo6XG4+zp1A+nZF0AZYECL+C9KVYbKFQbjhj7MU6V9sUJjZdV3PJsdQzcHMwJPdxUE/EQd0/ow1yu6ognb0Bpa8GsS2/UG91Y1P5jH/J7MTzk5827R51dExwQtKsZY573y2Pg5mBOmS4DlCewaqOFXJm7J6ylWG0g75CsC8DdE/rRvXnbP3AD2IS3H7MO2O5KlYoGIQTrG1fCwM2hpJTKCiOnXMA7qwt5EV9Lt4ebQ8a+vfURs61rU290Tsm2skSid+q1MeWAbKvf60EiHODYr4CBm0MtluuoNVu232Rcpfaim2aR+po6jZcdMvZjsSBqjRYWy3WzD8Xy5to3bydMlQLcPaEfs/kqRsN+BHzOuK1z26uVOWOE6TzOe/Jma4BezTgs48Zebr2bK1ThtflelUuNx5RGrMy2rm02V3XMwxqgXPPnOMOyLAZuDjXnoCJloBuAsq/P2pyy1ZmKjVh7N5evIhUN2H6vStVYLIhak9nWXswVnNEGRqWWSND5GLg51JyDevoAQCTgxZDfy4xbD2bzVQR9HsRD9u/fB7C+sR/KlkfOCNiBpWPP834tc7mKY673gHLvmstX0eJetedh4OZQTpsqFUJ0TmRa3VxeefK2+64JKu5V27vZvHPawADMtvZKSqlk3JwUtMeCaLQk5ks1sw/Fchi4OdSculelQ7IuQPsJjFOla1Kmy5xz844EfYgEvMy49WAuX3VMeQTA3RN6NV+qo96UDgvamW1dCQM3h1Iv4E7JugBAKhpgxq0HTrt5A8oCBV7AV9dsSWSKNWfdvDlV2hM1sHVCDzdVtwkvx/5cDNwcaq7grCkTAJwq7ZFjx57TZauaL9XQbDkr6xIN+hAOeDlVuoZO42UHjb36d+E1/3wM3BxqzmG1LgAwFg1hvlRHrdEy+1Asq95sYb7krKwLwGnyXjitrlXF3RPW1tmn1CEryYGlU6Uc+3MxcHMoRwZu7b9Ppsgb+EqyxRqkdEb39KVS0SDSfPJelXMDN06Tr8VJ212phgJexII+ZluXwcDNgerNFrKlmuPqnDq93PJcZbQSp968x2JB5KsNVOpNsw/FspzWu1E1FmeJxFpm8xWEA15Egs5ZjAZw7FfCwM2B1KyLE2/eADBXYOp8JY4N3KKsd1mL03o3qsZZ27qm2XzVUdk2FafJl8fAzYEce/NmseqaOjdvp2VdOkE7x34lc/mqI7Mu47EQCtUGSrWG2YdiWU5rvKwa4zT5shi4OZBTA7dUVNl/kYHbypw69t1pco79SpycdQHYhHc1c/kqxhy03ZVqvL3RPPeqPRsDNwdyaq1L0OdFPORj4LaKuXwVsaAPIb/X7EPRlLrYghm3lc3lnbXlkYr9vNY2m6s4Nmgv15soVJltXYqBmwM5tdYFYFuItTixhxsAJNvZVi5MWZkTV5ID3aA9zfN+WcVqA8Va05Fjz6B9eQzcHGguX0Us5LysC8AmvGtJ56tIOfAC7vd6MBr2c2HKKpy4YwbAwG0t3ea7Dqxxiyp/J5ZInI2BmwM59ckbUIpVGbitbK7gzJs3oATtzLgtr1JvIldpOPK8T0QC8AjevFfi5BmWVKydaS/wvF+KgZsDOfXJG1Dq9ngSr8zJQXsqymnylaQdfPP2egQSkQDHfgVqQKsu3nISZluXx8DNgdIOrXMClBsTWwMsr1JvIu/QrAvAafLVOHU1sSoVDWKO2dZlpR3aAggARsPtbCsDt7MwcHOguXzVcVseqbh7wsrUi5sTn7yB9rZXvIAvq7uS3Hl1TkB7mpxjv6y5Qg1CKFPKTqNkWzn252Lg5jDlWhP5qrOzLgB3T1iO07MuY7EgSrUmimwNcJ5Zh489g/aVpQtVjIYD8HmdeTtPRQPMtJ/DmSPtYk6udQHYhHc1Ts+6sN5lZXP5KoTotk1xGvXmzUas50vnq47NsgNqCyjOsCzFwM1hnP7kzW2vVubk1WUAx341c4UqEuEA/I7NugRRbbTYiHUZ6YJzS2OA9oI0nvNnceZZ7mJO3TVBlYwE4RG8eS9H/UycnHUBmHFbjpNXEwNLaluZeTlPulBzdOCWatc3MtvaxcDNYdSsixO3PwG6xapsDXA+pdbF79isCzNuK3N64MZp8pU5PeOWigaYbT2HM6/wLqbWujhxhZFKaQvBJ+9zOf3m3cm2MutyHif3bgSWBG4M2s9SqjVQqjU7jWqdqBu087xXMXBzmLl8FcmIc1cYAdyvdCVOD9w6jVh58z6LlNKxe9Sq1MCE5/3Z1LZIzs64Mdt6Lufe3V3KyT3cVCxWXd6cw6dMALaFWE6u0kCt0XJ04JYIByC47dV55hzcfFelXtP4wNbFwM1hnP7kDXQ76LNYtUtKiXS+5ugLOMDdE5ajfh5ODtp9Xg+SkQCnyc/Rbbrt3LHv7lfK817FwM1h0g6fLgOUm3et2UKuzGJVVbHWRLnedP7YM+N2HjfcvAFmW5fTGXsH17gx23o+Bm4OIqV0fJ0TsKQJL3dP6HD6rgmqFLOt58m0s1BOvnkDDNyWo9a4JSPOPe+ZbT0fAzcHyVUaqDVbSDn4JAa6wcksn8A63DBdBigZN7YGOJsazDj55g1w66PlpAtVDA/5EfA5+1bOoP1szh5tl8m4IG0OdHvU8SLe5fStzlSd1YUc+45MwfktgIDuzZvZ1i6lh5uzxx1g4HYuBm4Oki0qqeSE45+8lb9fhqnzDrdMlar7sDJw65or1JAIB+D1CLMPRVdjsSAq9RaKtabZh2IZTm++q2K29WwM3BxEbVCYdPiTdzzkh88jkCnyRFbN5avwegRGw84e++4KMwbtqoxrbt5swnuudKGGlMMf1gBmW8/FwM1B1IybU/eqVHnajVjT3D2hI12oIhFxQdal09OJC1NU6ULV8ec8gE6Awia8XWmH75ihSjHbehbTAjchxIeFEI8IIXJCiDNCiM8IIRI9fu+vCyGkEOIDeh+nnag1bk6vdQGUJzBm3LrShZrjM60AMNqeEmTGrStTdPYm4yq1losZN0Wl3kS+2nBNjRvAsVeZmXFrAng1gCSAfQA2A/jntb5JCLENwHsA/FzXo7OhTLGGWNCHoM9r9qHoLhnl8vClskV3ZF08HqG0BuAFvCOdd8fYj3Hro7O4pX8f0K3d5dgrTAvcpJTvl1L+TEpZl1LOAfhbANf28K3/BOD3AWT1PD47yhRrSLjgAg60M248iTsyxZrjF6WoxmJcYaYq15oo1pquuHknIkojVj6wKdSssxvGvpNt5XkPwFo1btcDeGi1Nwgh3gKgJKW8zZhDspdsseqK6TJAOZG5qrQr65KpUkC5UbHOSdHNujh/7H1eDxLhAG/ebeq0oRsWJ3RqW3nNBwD4zD4AABBCvBTAmwBcs8p7tgL4AICn9fgz3wzgzQCwdetWDY7S+jKFGjaPhs0+DEMko0GU600Uqw1Egpb4Z2yaakOpdXFT4PbEbMHsw7CETNE9WRegHbRzmhyAu4L2TraVYw/AAhk3IcQvA/gMgJuklPev8tZ/BPAhKeXpXn6ulPLTUsr9Usr9Y2NjWhyq5SlFys4/iYFuyxNm3ZauJnbLzTvA1gBtatbFNWMfY8ZN5aYaN5/Xg1FmWztMDdyEEG8A8CkAN0op71zj7c8B8GdCiLQQIg3gGQB+Twhxt97HaQetlkS2WHPFilKgOz2Q5srSTvDqlrFPRgOoNtgaAEBnZbVbHtjYQb8rXVAWo4X8zl+MBrQf2JhxA2DiVKkQ4h0A/gjA86SUP+3hW7ac8/v/D8DdAP5K62Ozo1yljmZLuufJO8Ll4arudJk7bt7qnpyZQhVRl0+Tu6lAHVBqndi/UTFXqLqivk3FoL3LzIzb3wCIA7hTCFFQf6kvCiFetfT3UspTS38BqALISSlnjD9061Fv3m6pc1LbH6h/bzfLFt3Tvw/ojj17uSk1P1E3ZV1i3dpWt0vn3bFPqUoJ3HjOAyZm3KSUq7Z4l1J+HsDnV3n9Wq2Pyc7U6TI39HMClgRufALrjr1L2oGk2M+rw011rUB37OfyVdcvSkoXqrhwImb2YRiGbYC6TF+cQNpwW9Yl6PMiFvLxCQzKzdvnEYgPueNG1g3aOfZK8113BOwA+3ktlS64Y8cMVSoaRKnGbCvAwM0x3FbrArDmQZVp71MqhLP3KVUtrXFzu0zRfdNlAKfJa40WFst1l13vGbSrGLg5hNoSYjTspos4m/ACyti7KesS8HkQD/lY34j2HrUuGns1UHH7PsWd1cQxF13vue1VBwM3h8gUqoiFfAj43DOkyQgzboAyVeqWRSkqZluBRrOF+ZK7pssS7N8IAJ2VtW4a+1Qn0+7usQcYuDmGUqTsnpMYUGqdmHVRLmRuWZSiSjLbimypBind0wYGULKtsZCvM8PgVm5qvqtiJ4EuBm4OkSm4p/muKhUNYr5UQ6PZMvtQTOWmxsuqZCTI6TIX1rUCzLYC6OzVO+aise9mW9099gADN8fIunK6LAAplcyDW1XqTRRctE+pihm3btbFdWMf4dh3Mm4uqnEL+b2IBtlJAGDg5hiZYtWF02WseXDbPqWqZDSIrMuzrZ2Mm4u65wNqiYS7sy7pfA3hgBfhgDtaAKmS0YDrp8kBBm6O0GpJzJfqrmnAqmIj1m7g5rapUjXbOl+qm30opulkXVx23iejQVc/rAHK2LttihxoZ1tdHrQDDNwcYbGs7FPqtps3G7EuLVJ22dhH2BYiXajB73VP42VVKhJAtlRDsyXNPhTTuHGGBWDQrmLg5gDqzcttJ3Jno3lm3JBwWdYlxaAd6UIVyUjQNY2XVclosJ1tde/YZ1y2a4IqFQ2wxg0M3BzBbXtVquJDPvi9wtUnsjr27su2MmjPFKquKk5XqQ+obq51ShfctxgNUO5x86UaWi7OtgIM3Bwh0ylQd9eJLIRQ2kK4+eZdbE+XhVw2XcaMW/vm7a6HNaD7kOLWoF2paXZf70ZAGftmS2Kx7N7aVoCBmyN0Ajc3PoG5vAmv2/YpVcVDfvg8wtU1bhmXFqinXL6aXK1pdmPQ3m3C697zHmDg5ghqxmnUhYGb25txKv373HcB93gEEpFAZ+sft5FSIl2ouW5RCtB9QHVrpt2tNc3A0k4C7jzvVQzcHCBbrGF4yA+/133D6fZGrJmiO6dMgPYKM5c+eeerDdSaLVdm3EbCAXiEe7c+cmtNM8BOAir33ekdKOPSQlWgm3GT0p3Fqpli1cVj794VZum8e7MuXjXb6tKxz7i0dyPANkAqBm4O4NaePoBy8642WihUG2YfiimyhZrrWoGo3NyMU715uzHjBsDVi5K6Y+++a/5o2A8hOFXKwM0B3LjBvKrzBObCE7lSb6JYa7o4aHdvM043Z9wAdy9KcnNNs8/rwciQH1mXPrCpGLg5QLZYc91elSr1xuXGBQpuXk0MKDVupVoTpZr7sq3p9tiPufS8T0Tcu2elm2uaAe6eADBws72m2tPHpTdvN68yyrq0+a7KzYXKasbNjVkXwN2ryTMF9y5IAtolEi4855di4GZzC6UaWtK9WZdOTycXps7TnbYA7sy6pFydba1iNOzirEskgHylgWqjafahGE7Z6syd13ugHbS78Hq/lDvPegfp7FXp0pt3p4u6C/t5ZQsunyp1cX2jknVx5zkPdB9W3Dhd6tbejSq3t4ACGLjZnjpFmHLpzTvg82B4yO/KjJubG3EC7u6i7uYWQIC7p8nd3LsRUB7WF8t11Jstsw/FNAzcbK6bcXPviezWJ7BMsYaA14No0F37lKrUrIMb6xvTLm4BBLh3mtztNc1AN9s678Jsq4qBm811si4uTp2nokHMuewCDqg93Ny3T6lqKOBFJOB1ZdCeLbq3BRDg3mny+VINUrq3rhXozi658YFNxcDN5tQL12jYb/KRmCcVDbiyGafbp0wAd2571Wi2sFCqu/phTf1377Yat4zLV5ID3aDVbef9UgzcbE5dXeZz6eoyQHn6duPTV8blWRdADdrdNfbzpToA99Y2AkA06EPA63Hd6kK317UC7q5vVLn3bu8Qbp8yAdxbrJopVF275ZEq6cJ+XurN283nvRDClbWt6t/Xzed9qlPb6q7zfikGbjaXLrh7aTjQfQKbL7nrIs6g3Z0bzXfbwPC8d1uJRNbFG8yr4kM++DzCddPkSzFws7ks65w6NzA3ncjlWhOlWtPVF3BAGftssYpWS5p9KIbpbHXG8951+5VmClUIAYyG3Tv2QggkXL57AgM3m2PWpfv0mXXRiaxOl6XcfvOOBtCSwEK5bvahGEbNMrn9vHfjVGm6WMNoOACvx50ryVVuXJS0lDsbQDlEp6ePi+sdgCUbzbvo6bs7ZeL2sVfbQlRdE8hkizXXZ12A7n6lUkrXtMTJ9tB4OZfLYXZ2FvW6cx9m3n91DC0JPPbYY2YfSt/8fj/Gx8cRj8fX/TMYuNlYp6ePS25YK+lm3NzzBKZmGtw+Xba0p9PuCZMPxiAZZl0AKNe9aqOFUq2JiEuaUGfWaLycy+UwMzODTZs2YWhoyLEB7YlsCaVaA3sn1x/8mEFKiXK5jNOnTwPAuoM3TpXaGG/eitFwAEK4q8atU+fk8qBdzbi5aYUZyyMU6mfgpunSzBr7lM7OzmLTpk0Ih8OODdoAwOcRaDTtV9cqhEA4HMamTZswOzu77p/DwM3G2BZA4fUIjIYDripUVuuc3D5N3sm2umrsGbgB3ZYYburllimsvhitXq9jaGjIwCMyh88j0JLStouShoaGBprKZuBmY+zp0+W2VUbZYg0BnweRgNfsQzHVaNgPIeCuoL1YdX2mFXBfI9Z6s4XFcn3NoN3JmTaVz6v8HRste/buHHSMGLjZGHv6dCUiAXdlXYpKkbIbLtKr8Xk9GBnyI+uirAtbACmWLkxxg/lOGxg+qPs8SujSsGnGbVAM3GyMPX26UtGAq5aHZwqrFym7iZuC9kazhYVy3fWriYFufadbsq1qo+kUH9Thay/M0brO7dFHH8X111+PcDiMjRs34g//8A/RbDZX/Z5HHnkEz3/+87Fx40YEg0Fs3boVv/Zrv4apqSlNj20pdyzFcSiuLuty080bUAvUefMG3LVX7XypzpXkbSG/F9GgzzULUzjD0tWdKtUucJufn8cNN9yAiy++GF/96ldx+PBhvOc970Gr1cKHPvShFb9vcXERO3bswGtf+1ps3LgRR48exR//8R/jvvvuw09/+lP4fNqHWQzcbCzTQ08ft0hEgpgv1dFotuDzOj+RnC7UcMFY1OzDsIREJIAn5gpmH4Yhstw14SzJqHse2LobzPOBzduZKtWuxu0f/uEfUC6X8aUvfQnxeBzPec5zkMvlcMstt+B3fud3VmzdcfXVV+Pqq6/u/P7aa6/F5s2b8dznPhcPPfQQnvzkJ2t2jKq+73BCiEuFEL8qhPh9IcQHhRDvEkK8SAgxqvnR0arYFqBLDWDnS85tOrkUx74r4cKbN8de4aZFSemCO1oAqVOPiUQCkUgEF110ET75yU+e9R6vR8AjBJoaTpXefvvteN7znndWgHbzzTejXC7jrrvu6utnJZNJAECtps+/zZ4ybkKInQB+HcCrAEwAaAFYAFAFMAIgDKAlhLgLwD8CuE1Kac/lHjaSKVZt14BQL2oGIlusYSzm7CfSUq2Bcr3JJ++2ZCSA+VINzZZ0fNlAJ+PGaXIAyudwar5k9mEYIluswusRGB7ym30ourrpppuwd+9efO5zn0MwGMTBgweRy+XOe5/PIzpTpc1mE1KuHsR5PB54PCvnqg4cOIBnP/vZZ31t69atCIfDOHDgAG688cZVf36r1UKj0cDRo0fxu7/7u7jyyivx1Kc+ddXvWa81AzchxD9CCdi+D+BPAPwQwCNSyuaS96QAXAngeQD+EsAtQohflVJ+X5ejJgBKjRufvBWdZpzFKoCYuQejs4xLnrx7lYgEICWw4ILt39Sx53mvSEUDePDUgtmHYQi1f5/HwQ8n6XQaR44cwVe+8hVceumlAIDrr79+2ff6vN3A7frrr18zK/a6170Ot95664qvz8/PY2Rk5Lyvj46OYn5+fs1jf+ELX4hvf/vbAICnPOUp+OY3v7lqoDiIXjJuFQB7pZTHV3qDlDIN4HYAtwsh3g3glwFs0uYQaTmNZgsLpbV7+riFmoFww5QZi5TPpgZrSpsMhwdunX1KnZ116ZVa49ZqSUcHNEC3BVC//vjrj+DRM+dnrIxw8cY4/ujGS3p+fyKRwJYtW/DWt74V73jHO3DddddhfHx82ff6PB7Um8rE3qc+9Snk8/lVf3YqlVrzz1+uvVKve+F+4hOfQDabxaFDh/ChD30IL3jBC/CDH/wAoVBoze/t15qBm5Ty7f38wPYU6W3rPiLqSbakNt/lzRtw1/Y33SJljj1wdluI3SYfi96yxSpGhvyuWIDTi2QkiGZLYrFcx6jDH2Tc0ALI4/Hgv//7v/H7v//7eOMb34hyuYxnPOMZ+PjHP44rrrjirPd6PQLlupJx27VrV09TpasZHR3FwsLCeV9fXFxcNhN3rt27lavPVVddhWc961nYsWMH/u3f/g1vfOMb1/zefvVa47YNwC8C2AagDuAEgJ8B+KmU0h3V4BbTzbo4O8PQKzUD4YaeTt2pUo494K5tr7jd1dk6uycUq84P3Io1XDY60vf39ZPxsoK9e/fii1/8Iur1Ou6++268733vw4te9CKcOnXqrOBLnSqVUmoyVbp3714cOHDgrK+dPHkSxWIRe/fu7evvsG3bNiQSCRw5cqSv7+tVLzVuvwzgXwE0AMwBiABQc455IcRtAP5CSnlUlyOkZXGD+bP5vB6Mht3RQT/DlhBn6WTcXNDPK+OC6eB+dPYrLdSwa/kZNcfIuqz9k9/vx7Of/Wy8+93vxitf+UosLCwgkUh0Xvd5PJBSoiWlJlOlL3jBC/CRj3wE+XwesZhSJ33bbbdhaGgI11xzTV/HfvDgQWQyGezYsaOv7+tVLxm3vwDw7wDeKqWsCSF8AGoAfgPABgCvAPBqIcTbpZT/rMtR0nk6N28XnchrcUsT3myxhqDPg7DL9ylVjS6ZKnW6bLGG3ePs36dyS4lEtdFEvtpwfGnMQw89hPe+9714xStegZ07d2J+fh4f/vCHsW/fvrOCNuDs3RP27Nkz8J/91re+FR//+Mfxkpe8BO973/tw5MgR3HLLLXj3u999VouQXbt24ZprrsE//dM/AQDe+973wufz4aqrrsLIyAgee+wx/OVf/iUuuOAC3HzzzQMf13J6CdwmAfyLlFI9M9SJ5B9LKe8H8IdCiF8F8LdCiKyU8qt6HCidTc0u8Om7yy0d9NXGy27fp1Tl93oQD/lcE7RzqrSr2wbI2dlWt5TGTE5OYmJiAn/6p3+KM2fOYGRkBNdddx0+/OEPn/fepbsnaPGpjI6O4o477sDb3/523HjjjRgZGcG73vUu3HLLLWe9r9FonLUN1v79+/GJT3wCn/70p1GpVLB161a89KUvxe/93u8hEolocGTn6yVw+ymAZwNYcQJZSvlP7Qa8fwSAgZsBssUaPAIYcXhPn364pYN+plhlwH6OZDTo+IxbsyUxX3LXdNla1H2anT72bimNGR8fx2c/+9me3tvJuGm47dXFF1+M7373u6u+59ixY2f9/uabb9Yts7aSXpYmvQ/Ae4QQ7xdCrPav5n4A/VXw0bqlXdDTp19u2f6GWZfzJSIBZB2ebZ0v1ZR9Shm0d/i9HoyE/Y6fKlX3Y2XQ3tXZ9qrpvl7/awZuUsofA7gRSk3bSQB/C2W6dIMQIiyECAghLgVwC4CDOh4rLZEtVnnzPsfSDvpOlinUHP/k3a+kC+ob2b9veW6obe3uUcugXaXHRvN20VMzICnlnQB2A/hzAE9pf/lrAPIAygAeALADwFu0P0RaTrZYYzuIc6gd9OdLzr2ISymVqVLevM+SjAbcM13GsT9LKhLsZKScyi1Tpf3wCAGvEI5/UF9OT33cAEBKWQLwMQAfE0IMA9gHYEv7ZxwH8AP2dDNOplDDRRu5T+lSiSUd9FMOfTIt1Zqo1Ft88j5Hop1tdXIH/c4G87x5nyURCeCww2tbM8Ua/F6BWLDnW7YreL0CDQ03mreLdf0rkFIuAvhfjY+F+pAp1pDik/dZUktbA0yYfDA64XTZ8hIu6KDPDeaXl4gG8JNjTs+2VpGMBLmS/Bw+jweNFmvcziOEeI0Qoq+GUUKIXUKIZ63/sGg19WYLi+W645eG9yvRaQ3g3Is4+/ctL+mCXm7qdBn3KT1bygW1rVyQtDyfR7DGbQXvAXBYCPFBIcS+ld4khEgKIV4lhPg6lO2wNmh1kHS2eTXrwimTs3SacTq4pxP79y3PDdteZYpVjIS5T+m53FDbmi5yQdJyfB531rj1sqr0cigtQa4D8DMhRE4I8WMhxH8JIb4khPiuEOIogFkAfwPgMIC9Usr/XO3nCiE+LIR4pP3zzgghPiOESKzy/he2/6y0EGJeCHG3W7N6apNZTpWerdPTycGtAZhxW143cHNu0K4sSOK4nyu5pLbVqTKFqmPrdgfha9e4rbXBvNP0uqr0NinlMwFcCOC3oawibUDZt3QGwL8AeD6ADVLKd0opT/fwY5sAXg0gCWWhw2YAq22ZNQrgEwB2ARgD8G8AbhdCbOnl7+AkrHNantrTydkXcK4uW456U3P6VCnr286XjDj/gY1TpcvzejyQkK7LuvW1OEFK+QSAJ7T4g6WU71/y2zkhxN9CCcZWev/nz/nS3wsh/gTAfij95VxDnQrkdNn5nN7TKVusIuT3IBzg6rKlRiNK3ZeTm/BmizVcMMZ9Ss+V7ATtzsy2lmtNlGpNPqwtY2kvN5+Ltm7uZXHCnBDiDiHEx4QQbxRCXCmECOtwLNcDeKjXNwshLoOSrXtYh2OxNPZzWlkyEnB0T6cM+/ctK+jzIhb0OTvjVqyxrnUZTq9v7Dyo83p/HnXbK60ybo8++iiuv/56hMNhbNy4EX/4h3941r6kVtHLY/vnADwJwM0A3gFl1wQphDgC4OftXw+1//uEXMdksxDipQDeBOCaHt8/DuALAP5SSnlohfe8GcCbAWDr1q39HpKlZYpVeD0Cw9yn9DyJSABH5opmH4ZuuGvCyhIO3vJM3aeUda3nU1fZph2abe0+qPOB7Vxa7lc6Pz+PG264ARdffDG++tWv4vDhw3jPe96DVquFD33oQwP/fC2tGbhJKd+l/r8QYgzAZe1fl7Z/PR/AUPstZSh1bz0TQvwygE8BuElKeX8P798I4DsA/hvA761y3J8G8GkA2L9/v6MmwLPFGkbD3Kd0OcloEPcemzf7MHST5eqyFSUiAcdOly209yllndP5fF4PRsN+xy5MYePllWm5X+k//MM/oFwu40tf+hLi8Tie85znIJfL4ZZbbsHv/M7vIB63TsP7vtaVSynnpJR3SCn/Wkr5RinllQCiUDaX/2UoOyv0TAjxBihB243tbbXWev92AHcDuF1K+fb1ZPecIF2oIcWTeFlO369UbcRJ50tGAo4tUO8sSGJd67ISDh57t5XGPPLII3j+85+PRCKBSCSCiy66CJ/85CeXfa+W+5XefvvteN7znndWgHbzzTejXC7jrrvuGvjna0mrhkCboWTe3trrNwgh3gHgowCeJ6X8QQ/v3wvg+wD+XUr53vUeqBNwhdHKEpEAWlLJUDiNsk8pM24rcfLClLTLbt79SkaDjq1vdNsG8zfddBO8Xi8+97nP4Wtf+xp+8zd/E/l8ftn3qvuV1uoNNBqr/2qtscPCgQMHsHfv3rO+tnXrVoTDYRw4cECzv58W1r00TQhxFYBfAfByKBsM1QD0c1X5GygtRe5cuo2HlDLa/vmvAvAp9fdQesltAvBOIcQ7l/yctyyz4tTRssUanrRp2OzDsKSlhcpOu9CVak1UGy3evFeQiAQxX6pBSum4rYG6N2+O/XKSkQAOzTpzv9JssYaAz4NIwPnLJtPpNI4cOYKvfOUruPTSSwEA119//arf4/MKvPymF+JHP7x71fe97nWvw6233rri6/Pz8xgZGTnv66Ojo5ift1b5TV+BmxDiSVCCtZsBbAcwD+DLAP4DwAiAVZvuLiWlXPXK2g7GPr/k928A8IZ+jtep0oUqb94rWNrPa7fJx6I1dcqE2dblpaIB1JsSuUrDcQt31Potjv3yktEAfnTEqTVuSuPlQR5Grr322vO+9vKXvxxve9vbUCqV8MIXvvC811//+tfj9a9/PdLpNF72sped9/qv//qv4xWveAVOnjyJ17zmNee9/p73vAc33nhjX8eZSCSwZcsWvPWtb8U73vEOXHfddRgfH1/1e7weDz740Y9hxL96Ri2VSq355y/3GVvxQXDNwE0IsRNKoPYrAC4BkAPwVQBvB/AdKWWj/b5f0PE4qa3WaCFfaTBwW4GTWwN0+/dx7JezdOydFrilO/uUcuyXk4gEsVCuo9FsOW5LMDeVxng8Hvz3f/83fv/3fx9vfOMbUS6X8YxnPAMf//jHccUVVyz7PT6PwKZtO7F7fPUehx7P6v8uRkdHsbCwcN7XFxcXl83EmamXjNsTAFpQ2m/8AYBvSimdd1e0iW6RsjtO5H51u6g77+mbbQFWt3Tbqx2pvha3W162WMNI2A+/w4ISraSi6n6ldYzFnHV+ZDQI3L73ve+t+Fo4HF719VQqterrW7ZsWfX1fu3duxdf/OIXUa/Xcffdd+N973sfXvSiF+HUqVPLBl8+r8DrXnYjfnrP91f9uWtNle7du/e8WraTJ0+iWCyeV/tmtl4Ct+MAtgF4BoAz7V8/0fOgaGVsxri60c5G8857tuBWZ6tTA1onri50U9ZlPZZmW50WuGWLVexI6tHz3tr8fj+e/exn493vfjde+cpXYmFhAYnE+duZ+zwCH/jzv8aG8OpTmmtNlb7gBS/ARz7yEeTzecRiMQDAbbfdhqGhIVxzTU8tZg3TSx+3HUKIp0OZKv0VAL8lhDgB4DYA/9lL7zXSTnevSmddnLTi93owPOTM/UrTnCpdlZqFdmLQnimyrnU1ibMy7TFzD0Zj2UINCZdk2R966CG8973vxSte8Qrs3LkT8/Pz+PCHP4x9+/YtG7QBSo3b9gt24eIN8YGmyd/61rfi4x//OF7ykpfgfe97H44cOYJbbrkF7373uy3Vww3ocXGClPIeAPe0V3NeDyWAezOA327voPAfAEp6HSR1MeuytmQk4Mibd7ZQw5Dfy31KV5B0cn1joYadY86a/tXS0kVJTlKpN1F00T6lk5OTmJiYwJ/+6Z/izJkzGBkZwXXXXYcPf/jDK36PVvuVjo6O4o477sDb3/523HjjjRgZGcG73vUu3HLLLev/oTrpd5P5FpRdC74jhHgrgBdCCeLeBSAMZTss0pG6D2fKJU9g65GIBBy52Th3TVhdyO9FOOB17FTplTuWzzjQuRk353Dbg/r4+Dg++9nP9vU9Wu5XevHFF+O73/3uwD9Hb+vOK0opa1LKr0gpXwGlj9trAHxTsyOjZWWLNfg8AvEhZl1W4tStj9LttgC0MqUJr7PGvtXep5Rjv7LRcABCOC/b6rbAbT26+5UOvu2VXWiyRElKWZRSfl5K2V/TFupbpqAUKVutr4yVJKNBx13AAaVImRfw1Tmxg/5CuY4W9yldldcjMBp2XomE+vdh0L4yX2e/UvdM+HFtuc1osTTc6ZT9SutoOWy/0kzBebtBaC3pwG2v1Ok/nverc+JetRz7tXk13K/ULhi42Uy2WO0U4tLyEpEAmi2JxXLd7EPRTGefUl7AV+XE/UrVrAvP+9U5cew7W52xpnlFHiHg9QhNatzsgoGbzTDjtrZkpy2Ec2qdirUmao0WFyesQV1RLKVzLuKsc+pNKhrstMxxigxrmnvi8wg0mqxxI4vKFriycC1ObMTanTLhk/dqEpEAao0WCtWG2YeiGXXsmW1dnSMzboUaRvusaXbSQ0uvvB6PraZKBx0jBm42Um00ka9yn9K1OHG/0k6RMoP2VTl57Ed53q8qEQlgoVRH3UGZl37LI/x+P8rlso5HZE0+j7BV4FYul+H3r38/ZQZuNtKpd2Cty6qSDuyg392nlDfv1Thx7LPFGoaHuE/pWlLtsZ8vOWns+1tJPj4+jtOnT6NUKrkq8+bzClusKpVSolQq4fTp0xgfH1/3z+HEuY2oN2/WuqxuNKw243TWBRzg2K9FnUp2UgNmLkrpTWJJicR4LGTy0WgjW6zhSZuGe36/ujXTmTNnUK87Z3HWWhbLdRQqDWBhCFbvlOX3+zExMTHQNloM3GyEPX16E/B5EAv5HNWINV3g6rJeOHHbq0yB/ft6oWZbHTX26wja4/G45fbW1Ns/ff8oPviNR/GzP3iOK0oKmHu3kU6RMqdK15RyWCPWbLGGcMCLocAAm/G5gFOnSlnbuDY1wHHK2NcaLeQrDS5I6kHKgef9ahi42QjbAvTOaSvMePPuTTjgQ8jvcVS2NVus8ebdA/WB1in7laq1egme92ty4qKk1TBws5F0oQa/VyAe4gz3WhIO66KeLlR58+5RMuKcbGurJZWgnQ9raxoZ8sPjoP1KuSCpd2rg5pSgfS0M3GxEXWHEfUrXpjZidQrevHvnpKCd+5T2ztPerzTtkLHnDEvv1F1FnHTNXw0DNxtRbt7MuvQiGQ1gvlRzzH6lmQIDt145aZpcnfLlNHlvktGAY6bJ1Z1feN6vzYmdBFbDwM1G0tw1oWeJSBDNlkSuYv8l8VIq02WsdemNkzaaz3A1cV+clG1lxq13AZ8HcYd1ElgNAzcb4XRZ79TPyQnTJoVqA7VmCynevHuSjAYcs09thjfvviSjQccE7dliDUIAI2GOfS+SDusksBoGbjaSYYF6z5y0yoiNl/uTiARRqbdQqtl/v1JuddafZCSAtEMK1DPFGkbDAXg9rGnuhZOyrWth4GYTlXoTxVqTF/AedZtx2v8izpt3fzr9vBxwEVd3gBhl1qUnyUgQuUrDEfuVZlnX2hcnlUishYGbTXDXhP6oNUFOSJ13Gi8z29oTJ2Vbs8UqYiEfAj5eqnuh1oHOO2Lsa8yy98FJJRJr4dXAJtQnb+6a0JvRiB+AQ7Iuap0TM249STho66NMsdZpdUBrSzmotjVTrDLL3odkJIj5Ut0xnQRWw8DNJtLcZLwvQZ8XsaDPMTdvgNnWXnUXptj/6ZtZl/44K9vKse9HIhJAsyWxWLZ/J4G1MHCzCTXjluITWM+U1Ln9L+CZQg2RgBchP/cp7QVv3u7V3avW3kF7syWxUK5zMVofnDL2vWDgZhMZZtz6pjRitf9JnC1WOUXeh2jQh4DX44jALcMWQH3p1LbafKp0vlSDlMyy98MpY98LBm42kSnWEPB6EA1yn9JeJSJBR5zEGWZd+iKEcES2VUqJeY59X4aH/PB6hO2zLmy+27/OfqU2P+97wcDNJrLtXRO4T2nvnLJfaaZQ4xR5n5yw7VWu3ECjJXnz7oO6X6ndx54bzPcvFWXgRhbDrEv/ktEA5os1SGnvVUaZYpVj36eEA4L2DPcpXZekAxqxciV5/0bV2labj30vGLjZRKZYY51TnxKRABotiVzZvh30O/uUski5L0kH1Dd2t7vi2PfDCdPkWdY0983vVfYrtfs0eS8YuNlEplBl2rxPTlhllK82UG9KTpX2yQn1jZwuWx8nTJOrgSd3zOhPyiX7lTJwswluMN+/hAN2T+A+peuTjAZQqjVRqTfNPpR1Y4H6+qSiQdv38MsUahge8sPv5S26H4lIgFOlZA3lWhOlWpP1Dn1ywp6V2U6dE6fL+pF0wAozTpetTyISQL7SQK1h3/1K+aC+Pkptq72D9l4wcLMB9R9iirUufUk6YOujNKfL1iXhgELlTLGGaNDHxst9ckIDZi5IWp9kNGjrce8VAzcb4HTZ+nQv4PZ9AuN02fo4ob6RuyasT4pj71rJdn2j0/crZeBmA+rNm20B+hP0eREN+my94TQDt/VJOKCLOm/e6+OUsef1vn/JaAAtCSw4fL9SBm42oBbaJjlV2je7rzBLF6qcLlsHJ0yTZwqsc1oPu499qyUxX6ozaF8HJ8yy9IKBmw0w47Z+yai9Azc+ea9PLOiD3ytsvjiBGbf1sPvClMVyHc2WZP++dVCTG3aeZekFAzcbyBZrCPo8CAeYdemX3be9yhR4814PIUQ722rPJ+9O42UG7X2Lh/zweQQyNm0Jol6vmG3tn92zrb1i4GYD6faUCfcp7V8iErDtBRxo75jBJ+91sXMT3kK1gVqzxZv3Ong8AqM2LpFgXev6dVtA2fea3wsGbjaQLVbZx2udEpEg5kv23a+UO2asX8rGWx91V5LzvF+PZCRg2+ky9u9bv1GbT5P3ioGbDXCD+fVLRQOoNyVyFfvtVyqlxHyJ02XrZeeFKZwuG4xS22rPrEuGNc3r5vd6MDzkt+153ysGbjaQKbBAfb3s3IwzV1H2KeXNe33sHLhxQdJgEhH77lmZZd/OgSQjAduWSPSKgZsNZIqcLluvhI1rHtRj5s17fZKRAArVhi33K+V02WCSNt6zUt0xI+jjYrT1SEadv+0VAzeLK9UaqNRbrHFbp6SNN5rvZF1Y57Qu6jljx6xbhmM/kGQkgHy1gWrDjkE7S2MGkWDGjczG7a4GY+fl4WmO/UDsPE2eLdQw5PdiiC2A1sXOQTsDt8G4Yb9SBm4Wpz55pzhdti62vnl3xp5Zl/VQywvSNpwm5817MN0SCfud90oLII79eiUjAcyXamg6eL9SBm4Wp9Y5sS3A+oT8XkQCXpvevJVjHo34TT4Se7Jz0J7hjhkD6W40b7+xzxarDNoHkIi09yst2W/se8XAzeLYFmBwCZtue5Uu1BBjkfK6cbrMvey6Z6W6YwZrmtfPzud9rxi4WZya6ufT9/olI/aseeA+pYOJh+y7XykDt8F0FiXZbKo0X2ULoEF1SyTsNfb9YOBmcdliFUN+L8IBn9mHYlt27euT4ZTJQIQQGA3bb8szKSVbAA0oPuRT9iu1WdDOHm6Ds/OCtF4xcLM47powOLs2YlUaL3PKZBB2HPtSrYlKvcW61gEIIWy5T7EaaHK3lPWz6zR5Pxi4WRx3TRhcot2Q0W77lXJ12eBSUft10OeuCdqwY1uILGuaBzYa5lQpmSzLm/fAUpEg6k2JfNU++5VKKTHPbOvA7Jhx44Ikbdhxo3numDE4v9eDkbCz9ys1LXATQnxYCPGIECInhDgjhPiMECKxxvc8v/09ZSHEw0KI5xp1vGbJFKqcMhlQJ3Vuo4t4rtxAoyU5VTogO3ZR581bG0kbribnjhnasOMDWz/MzLg1AbwaQBLAPgCbAfzzSm8WQuwE8CUAfw5guP3fLwshtut+pCZRipRrbL47oIQNezql2zdvZl0Go+5XaqetjzoryXnzHogdb97cMUMbSraVNW6ak1K+X0r5MyllXUo5B+BvAVy7yre8DsB9UsrPSSlrUsrPA7i//XVHKtaaqDZafPIekBr82KlQmXVO2rBjT6csC9Q1kYoGUag2UKnbJ2hnGxht2LUFVK+s1GPiegAPrfL6PgD3nfO1+9tfX9XBgwdx7bXXnvW1l7/85Xjb296GUqmEF77whed9z+tf/3q8/vWvRzqdxste9rLzXv/1X/91vOIVr8DJkyfxmte85rzX3/Oe9+DGG2/EwYMH8Za3vOW81z/wgQ/ghhtuwAMPPIB3vvOd573+Z3/2Z9i853JUTj2Gj7/7Q/j32NlP3x/72Mdw+eWX43/+53/woQ996Lzv/9SnPoU9e/bg61//Ov7qr/7qvNc/+9nPYsuWLbjtttvw93//9+e9/oUvfAGpVAq33norbr311vNe/+Y3v4lwOIy/+7u/w3/+53+e9/r3vvc9AMBHP/pRfOMb3zjrtaGhIdx+++0AgA9+8IO44447zno9mUzii1/8IgDg937v93DPPfec9frmzZvxuc99DgDwzne+Ew888MBZr1944YX49Kc/DQB485vfjJ8/egDTJ+bxzu9EMR4L4vLLL8fHPvYxAMCrX/1qnDp16qzvf/rTn44///M/BwC89KUvRSaTOev166+/Hn/wB38AAHjBC16Acrl81usvfvGL8d73vhcAzvt3B/T2b29y//PQLC3i3a/7JUTOaQVjxL+9q6++Gj/84Q/x/ve//7zX7fRv719v+xKmZ/K46a5hRII+w//tPf7442e93su/vfizXouAz4PXvfIVpvzbM/u6p9W/vU/e8meYnivg2d//MAI+JUdh9ete9EXvQzIaMO3fntnXPa3+7d3+4bciW6zh2q+Ndl63+3VvKUsEbkKIlwJ4E4BrVnlbDMDiOV9bAHDJCj/zzQDeDADBoD2nHNTpMr+Xa0gG4fcKAEC92TL5SHqnTuty7Aejfn51G+1byNXE2vB5uue9GrhZHZtua8PvFag3W5AAhNkHowNhdosEIcQvA/gUgJdKKe9c5X1fAXBMSvnOJV/7GwBbpJQvWe3P2L9/v7z33nu1OWAD/c+jM/i1f70XX3v7M3DZ5hGzD8fWLv7Db+FXnroVf/Dii80+lJ584o5D+KvvPI7HP/QC29x0rOjwXAHX/9Vd+OtX7MMvXbHZ7MPpyRtv/SlmchX81zueZfah2Np9x7N46d/fg1vfcCWu3TNu9uH05Oo/vwNPuyCJ//vyy80+FFu79QdHccvXH8V9H7jBtgu8hBD3SSn3L/eaqXcEIcQboARtN64WtLU9CODJ53ztivbXHSnD1WWasVszzkyxhljIx6BtQCkbbn3EptvaSNhs7NXFaMy2Di7RDtbstCCtH2a2A3kHgI8CeJ6U8gc9fMu/AtgvhPgVIYRfCPErAJ4C4F/0PE4zcWm4dpKRgK1OYmU1Mcd9UOrWR3YqVM4Wqxx7Ddht66NSZzEax35Qqc6CNHuMfb/MfJz/GwBxAHcKIQrqL/VFIcSrlv5eSnkYwEsAfABArv3fX5JSHjP2sI2TLdQQDnBpuBbs1kVd6d/HJ+9BCSEwarNebtkCM25aiAV98Hvts18pd03QTrcFlH1mWfph2uIEKeWqNYPtdh+fP+dr3wLwLT2Py0oyLFTVTCISwGNTObMPo2fZYg1bE2GzD8MR7JRtrdSbKNaaDNw0IIRAMhK0TYlEZ59Sjv3A1FkqOz2s94MFNBam1Lowba6FZDvrYvZinF6luUetZpQO+va6eTProg07NeHt7JjB835go2E/AE6VkgkyhWpnrp4Gk4gEUGu2ULDBfqWtlsR8qcbaRo0kbNSMU92WjVkXbSSjAaRtMvbdHTM49oPytfcrdepUKQM3C2MXbe3YqYN+rlJHsyU59hpJ2qjGTb3RMNuqjWTEPtnWLKdKNZW0Uba1XwzcLEpKiUyhxrS5RjrbXtngRE6rT94ce00kIgHkbbJfaffmzWyrFhKRoG2C9myxhoDXg2jQEn3xbS8ZCXaupU7DwM2iCtUGas1Wpw8VDSZho+XhWbaB0ZQaAM8X6yYfydqYddFWMhpAqdZEuWb9oF3t3yeEE3v9G0+pbbX+9X49GLhZVIa1LppSP0c7TJuoq+A49troZlttMPbFGvxegXiIWRct2GnsWRqjLTstTOkXAzeL6qwu43SZJpJR+0yVqseY4thrwk4d9LOFGkbDzLpoxU61rWz/pK1kJID5Ug1NG+1T3CsGbhalZl04XaaNcMCHIb+3s2rPytSbzCifvjXRzbZaf+yVmzfPea0kbFTbmi2y6baWktEgpATmS9Yf+34xcLOoLDNumkvYpBFrplBFPOSD38vTUwspG2Vbs8Uq20FoqDP2dnhg444ZmrJTXXO/eGewKHbR1l4yapPAjfuUaioe8sPrEbaob2Sdk7bsUtuq7pjBoF07dqpv7BcDN4vKFGqIBn0I+blPqVbs0tMpwydvTXk8AqNhe/Ry49hrKxr0IeD1WH7s2QZGe3aqb+wXAzeLYr2D9hKRoG1q3Dj22rLDfqXVRhP5aoNZFw0JIWyRaWdpjPY4VUqGy/DmrTn1Am71/UozxSpSMT55a8kOPZ3UPnNsuq2tRCRg+Y3muUet9kbDfghhj9rWfjFws6hMgXVOWktEAqg2WihauBlnsyWRLda4R63G7NDTqbPdFcdeU8mo9feq7Wwwz7HXjM/rwciQ3xblMf1i4GZRmWKVfbw01ilUtnDqfKFUQ0uCLSE0lowEkLZ41oV1TvpQxt665zywdIN5jr2WEjbap7gfDNwsSN2nlPUO2uq2hbDuDZyNl/WRiASRrzRQa7TMPpQVcbsrfdhhs/FMsQafRyA+xB0ztJSMBjlVSsbIlRtotCSfvjSmZjKsfBFPs/GyLjr7lVq4GWc368LATUuJaADlehOlWsPsQ1lRplBFMsodM7SWtEF943owcLOgtFrrwqyLppI2WGWkHhunybVlh7HPFmvwegSGh/xmH4qjpGyw5VmmUOPDmg7ssChpPRi4WVD35s0TWUt22P6ms9UZx15TCRs048wUlX1KPR5mXbRkhy3P0tynVBeJSBAL5ToaTeuWSKwHAzcL6t68eSJrKRzwIuT3WHqVUbZYg0cAI8y6aEo9l6x88+Z2V/pI2KG2tVDlg7oOkpFAe7/SutmHoikGbhaULnKFkR6EEEhGrF2smm7372PWRVtJG0yXsfGyPuwzVcqx15odHtjWg4GbBWUKVQihNBAkbVl9eXimUGXAroPhIXW/UiuPfY3Nd3XQzbhZc+xLtQbK9SbLI3TQ3T3ButnW9WDgZkGZglLr4vNyeLRm9UasbAOjD2W/Ur+1p8vYeFkXkYAXQZ/Hsuc9FyTpR51+tmrQvl6MDCwow31KdWP1VUaZYo1P3jqxcra11mhhsVzn2OtAKZGwbgNm9bhY46Y9OyxMWQ8GbhaUZr2DbpTNxquW3a80XWCBul6SEetufaT2l2O2VR9W3vaq07+PY6+50XBA2a/UokH7ejFwsyCuMNJPIhJEpd5CyYL7lVYbTeQrDU6Z6CRh4WzrXJ5ZFz1ZuUSis0ctx15zXo/AaDjAqVLSX4Y9fXSTtHDqXD0mXsD1YeXpMvXGwqBdH0kLT5OnuWOGrqxcIrFeDNwspt5sYaFU58pCnSQtvMKMWx7pKxEJIFdpoG7BZpwZbnWmq2TUuiUSmUIN0aAPIb/X7ENxJDvsVdsvBm4WM89NxnXVLVa1XuYlzV0TdKV+rvMWvIizzklfVi6RyBSrHHcdqUG7kzBws5g0l4brSs1opC2YOmdbAH0lLbzlWbpYRcDnQTToM/tQHMnKjVjZfFdfiQhr3EhnLFTVV8LKF3COva66zTitN/bpfA1j0SCE4I4ZelADIyvWOKYLVZ7zOkpGglgoOWu/UgZuFsM6J31ZuRlnplBD0OdBJMBaFz10M27Wu3lzukxfamBkyfO+WGOWXUedbGvJemO/XgzcLIZ1TvpSm3FaMutSqCHFrItuLH3z5nSZrqw6Td5qSWSLNS5K0ZETm/AycLOYTLEGv1cgHmKti16Ufl7MurjNyJAfHmHNqdIMp8t01VlNbrGxXyzX0WxJnvc6UoPirMXGfhAM3CxG3WScWRf9JCJByz15A2g/efMCrhePR7QLla0VtEspkWbvRl2FAz6E/B7LPbCxrlV/6nmVtuA1f70YuFkMNxnXn1WnSjOFGhKcMtFVKhq03IriQrWBWqOFFMdeV8lI0HLnfaeLAB/YdNNpum7BhSnrxcDNYtLcZFx3VmzIKKVEulBlkbLOlMDNWhfwzs07xrHXk9LPy1rnfbd/H6/5ehlp71dqtWv+IBi4WUymUOXTl84S0QDK9SZKtYbZh9JRrDVRbbSYbdVZMmq9ba+4a4IxrDhN3p0q5XmvF3W/Uk6Vkm44Vao/dUrKStMmvHkbIxUNIp23zrgDS/aq5Hmvq2QkaLkC9XShBiGA0TDHXk/JSMByYz8IBm4WUqo1UK43mTbXWadY1UKZF968jZGKBi2XbVWzLime97pKRpWsi5X2K80UqkiEA/B6uBhNT1bMtg6CgZuFsPmuMdQbpJWK1NWMG2/e+uoE7RbKuqnnPbMu+kpGAqg1WihaaL9SzrAYIxW1ZieB9WLgZiFp3rwNkYqpgZt1nsDUiwov4voaa59bcxYa+3ShiuEhPwI+Xo711GnEaqUHtmKV5REGSFhwQdogeKWwkAynywzR2bcwb52bt5pxSzDbqiv1oShjocAtU+CWR0boZNotNGXGjJsxEpEAFkp11B2yXykDNwthM0ZjhPxexEI+S2Xc0oUaYiEfgj7uU6qnbn2jdZ6+ucm4MayYcVNaAHHs9aY+GM07ZL9SBm4WkmaNm2HGLNaIVdlomhdwvVlxYQo3GTdGorNfqTXGvtZoIVdp8HpvgIQFOwkMgoGbhWQKNUSDPoT8zLroLRUNWqrOSdnqjBdwvQV9XsRDPotNlbLOyQid/UotUuuULbL5rlHUsXdKnRsDNwvhJuPGScUCFrt5s9bFKFba9qrRbGG+VOfYGyAc8GHI77VM1kXN+nLs9ZeMWCtoHxQDNwvJFLjJuFGSEevcvAE1aOeTtxGslG1VMwCcJjdGMmqd1YWZztjzmq+3zjS5Rc77QTFwsxAWKRsnFQ1isVxHrWH+KqNWSyJbrHGrM4NYKdva2aeUN29DJCPW2fKMu6UYZyQcgMdB+5UycLMQFikbR93Q2wqFygvlOlqStS5GsVK2lSvJjZWMBi1z82b7J+N09iu1yHk/KAZuFqFmXfj0ZYxOTycLdNBnDzdjWSnbyt1SjGWlRqzpYhUBnwfRoM/sQ3EFZezNf1DXAgM3i1gs19FsST59GaS77ZX5JzL3KTWWmm21wg28W6DOBzYjJCMBZArW2K80U1DKI4TgPqVGsFJ946AYuFkEp0yMZaWtj7jVmbHUrLZVgvaA14N4iFkXIySjAdSaLRSqDbMPRWkDw3PeMMlI0DIrigfFwM0iOkXKnDIxhJp1scbNm4GbkcbaY2+FoF25eTPrYhQrNWLNFNkCyEjJaIDtQEhbnDIxVjjgQzjgtUSNW7pQhc8jMDLkN/tQXKG7X6n5Y8+bt7Gs1IRXaf/E671REpEAFsvO2K+UgZtFqBuej8V4IhtFeQIzP+syl1eyLh4Psy5GSFqovpG7JhgraZF+XlJKzBWq7CJgIHXs5y0QtA+KgZtFzBWq8DLrYiilg775N+90ocaA3UCRgBchv6fzsGSmNHfMMJQatJtdpJ6vNlBrtHjeG0gdeytkWwdlauAmhLhZCHG3ECInhFizWlQI8V4hxGEhRF4IcUgI8TYjjtMIc3nl6YtZF+OkokFLTJUqY88LuFGEEEhFg6ZfwKWUSBc49kayytZHc5xhMVx39wTzr/mDMjvjNg/g7wC8c603CiFuAvDHAF4lpYwBeC2AjwghnqPrERqEWRfjWSfjVu2sciVjJC0w9vlqA9VGC+M87w0T8nsRCZi/X6kauDFoN04qap2m64MyNXCTUn5bSvnvAI708PZdAB6UUv6o/b33AHgIwD4dD9EwzLoYbywaQLZUQ8PEYtVWq5114c3bUGPRQOfmaRZmXcyRiJrfiFV9aODYG8dKK4oHZXbGrR//ASAuhHiGEMIjhHgWgAsBfMvk49IEsy7GS8WCkBLIlsw7kZVVTpJjbzArTJUy62KORMQ6Y8/z3jgjQ354PcIRGTc7dX2cBfAFAHeiG3C+U0r58HJvFkK8GcCbAWDr1q2GHOB6MetijqXbXo3HQqYcQ6eHG8feUGoX9VZLmlZXyoybOVKRAKYWK6Yew1xeaQE0zMVohvF4BFIWyLRrwU4Ztz8A8EoAlwPwQ5kifZcQ4leXe7OU8tNSyv1Syv1jY2PGHeU6MOtiDitse8Unb3OkokE0WxLzJmZbO9NlHHtDJSLmtwFSS2O4GM1YY7EgAzeDPQXAl6WUj0rFIwC+AuDF5h7W4FjvYA61WNXUwK0z9mwJYaSUBVoDzOWr8HuZdTFaMhpEtmjufqXpQpXXexOMRYOW2DFlUGa3A/EKIUIAAu3fh9q/lnsM+QGAXxRC7G6/9yIAvwjgfqOOVy+sdTFH0gId9LsZN3Omat1K7Z1mZi83Zl3MkYoGUG9K5Mrm7Vc6x8DNFMy4aeM1AMoAvg3A2/7/MoBtQohXCSEKS977EQBfBvCd9te/DSXj9heGHrEO5phxM0U85EPA6zE149bZZHzITuWm9qdOT5r59D3HHm6mUK+zcwXz6tzUvp1krLFYEOmCUttqZ2a3A7lVSimW+XVMSvl5KWV0yXsbUsrflVJul1JGpZRbpZTvkVLWzfw7aIFFyuZQGrEGzL15ty/g3GTcWFbYr3Quz6yLGdTPfDZnznnfaklk2LfTFGMWqG3VgtkZN4Ly5B3wehAPMetitFT7CcwsrHUxx3C7NYDZC1O4MMF44zFzs60L5ToaLS5GM8NYu3uA3evcGLhZQDqvPH0x62I8ZdsrszNuvIAbzezWAK2WRKbIrIsZOjdvk8a+U9PMsTdcZ5rc5nVuDNwsQKl1Yb2DGVLRgMk1bsy4mWUsZt4Ks/lSDc2W5NibIB7yIeDzYNbkwI0ZN+MxcCPNsNbFPGoHfTOKVdWsCzNu5hiPhUyrc1IDRo698YQQSlsIk27ebP9kHgZupBlmXcyjNmJdKBu/xoVZF3ONm5hx44Ikc43HzQvcOFVqnkjAiyG/l4EbDabZksiwLYBp1IunGdOlzLqYaywWRKZQRdOEbCsDN3OZmXGbK1QR9HkQC3IxmtGEEKaWSGiFgZvJssUaWpIXcLOMm9gaIJ1XVrNy7M0xHguiJYGMCRdxTpeZaywWxGzenD5uamkMF6OZwwlNeBm4mSzNrIupOoGbCRdxtQEoF6aYQ11daEaR+ly+iiG/F5GA1/A/m5T6xvlSHbVGy/A/m6Ux5jIz26oVBm4m45SJucbj5t28mXEzl5mFysy6mEsdezM2m2cLIHNxqpQG1pky4YlsimjQh3DAa8pUqVrrEmWtiynMzbayBZCZzNw9gV0EzDUWC2KhVEe10TT7UNaNgZvJuMLIfOMm1bsw62IuK2TcyBzjJo19o9lCtlTjg7qJOtlWE3fMGRQDN5Ox1sV847GQOVOlXE1sqpDfi3jIZ9LYc9cEM3U3mjd27LPFGqTkg7qZ1KDZznVuDNxMphaqMutinjGTejox62K+8bjxTXjrzRayxRrGoiFD/1zqSpl081YfEphxM48TmvAycDMZa13MNx4LYjZnzlQpM27mMqMJrzpFw6DdPAGfB6Nhv+ElEnNsA2M6s7KtWmLgZjLevM03HguhWGuiWG0Y9mfWmy1kijVMxDn2ZjKjn1enrpUPbKYyo59Xuv3njTNwM02yfd4x40brNpuvYiLOKRMzdVcXGnciqxcNjr25lGxrFVIat3uC2r+PWRdzmRG4cbcU8wV9XoyE/QzcaH0q9SYWSnVmXUw2HldbAxiXeZnlk7cljMdCqDZayBuYbWXvRmswY1HSbK6KaNCHIS5GM5Xdm/AycDPRXOfmzayLmcZN6KA/0w4SmXEzlxn9vLpTpQzczKRm3IzMts7mK3xQtwC7N+Fl4GYitbZmnCeyqcyYKmXGzRrM6Oc1k6tiJOxHyM+si5nGokHDs60zOZbGWIHd9ytl4GaimRzrnKxgJOxHwOsxtEh9NleBRwBJZl1M1ZkmN3DsZ3IVTDDLbrpuiYSxmXZe7803FlUWJRmZbdUSAzcTcbrMGoQQyhOYwRfwVDQIr4f9+8yk9lIzNOOWrzLLbgFGN2KVUmI2X2WW3QIm4iFU6sZmW7XEwM1Es/kq/F6B0bDf7ENxPaUthLFTpQzYzRcf8iHg8xgauM0y62IJRvfzWizXUWu0MM6xN50ZC9K0xMDNRDO5CsZjIe6aYAFG71eq1LrwydtsQoj22Btz8261ZDto59ibTV2UZFTQ3i2N4dibTX1wmjF41xStMHAz0WyOUyZWMR43NuM2l69gjHVOlmBkE95MsYZmSzLjZgHxIZ+hta0sjbEOdQymF5lxoz7N5iusd7CI8VgIC6U6qo2m7n9WvdlCusBdE6xi3MAVZurNmy2AzCeEUB7YDMq6dAI3jr3p1GvvjMG7pmiFgZuJuDTcOoxsC8H+fdZiZCNWNbvDoN0aJuIhw7IunRZAHHvThQM+xEI+Q1cUa4mBm0kq9SYWy3UGbhbRbQuh/4ms/hm8eVvDWCxoWLaVLYCsZTIe6mTC9DaTqyAe8rF/n0UYGbRrjYGbSdRIn9veWENn9wQDnsA4XWYtRmZb1bHneW8NE/EQpnPG9POa5QyLpUzGQ5wqpf50p0x4IluBmnGbM+BEZsbNWiaG1RVm+o/9TK6KVDQAv5eXXiuYHA6iVGsa0s9rJs82MFZiZH2j1nj1MAmXhltLMhKERxg0VcpdEyxlsrPCzJixZ6bVOjptIQyYMmMXAWuZaE+Tt1r22z2BgZtJuMLIWrwegVTUmCew2VyVuyZYyIZ2xm3aiIwbNxm3lEmD+nkp/fuYcbOSyXgIjZZEtlQz+1D6xsDNJLP5KgJeD0a4a4JlqPUueuOUibUMD/kR9HkwvVjW/c/iSnJrmTQoaJ8v1VBvSkywttEyOi1BbLh7AgM3k8zmKhiLBblrgoVMDhuzwmwmx/0KrUQIgQ3DIUzrnHVpNFtIF6rc8shCuh309T3vuZrYesYNGns9MHAzCadMrGfDcAhTBtS6zOUrrHWxGKU1gL4Zt3ShBilZ12olIb8Xw0N+3dtCqKsXed5bh523vWLgZhIl68KnLyuZiIewWK6jVNNvhVm10US6UMNkfEi3P4P6Nzms/zQ561qtadKAEom5HJtuW40668GMG/VsZrHSqa8ga+gUqev49K0uftgwwrG3ksnhEGYWq7r28+JeldY0MRzCrEFBOzNu1uH3epCKBhi4UW/ylTry1UYnUCBrmDQgcDuzoEzHceytZTIeQq3ZQrao3wqzGfbvs6TJeFD3jNtUroLRsB9BH3dNsJLxWIhTpdQbtY6KGTdr2TCsTF/qWeem3iAYuFlLp5ebjjfw6cUyvB7B/n0WMxkPYS5fRaPZ0u3PmFood64vZB1GLUjTGgM3E6iBwcYRnshWYsTN+8yCGrRz7K1k0oDdE6YWKpiIsX+f1UwMh9CSyuIRvUwtVrCR5RGWMxEPMnCj3kxxusyShgJejIT9mNJxdeH0YhmxkA/RoE+3P4P6pwZuemZbzyyWsYEPa5ajLhbR84FtarHCjJsFjcdCSBdqqDX0y7bqgYGbCaYWKxCCRcpWNBkP6br1kXIB57hbzVhU2fJMz62POPbWpHdta6nWwGK5zgVJFqRmQe2WdWPgZoKpxTLGokFuNG1BSiNW/TJufPK2Jp/Xg7GYfkXqUsr2dBnH3mrUB+jZvD5jr5ZHMGi3HvVarC4aswtGDibgk7d1TQ4P6bqqlGNvXZNx/RowZ4rKdAzH3nqSkQD8XqHbea+WXvCBzXrUBykjGq9riYGbCZh1sa4Nw0rNQ7XR1Pxn1xrKlkdcTWxNeq4wm+pkXXjeW43HIzAe0y9o7yxG49hbjjpVepoZN1qNlBJTC2XevC1KHZdZHXr7qEEBL+DWpNQ36jRd1s66cGWhNW0aGdLt5q0G7RPDbANjNeGAT/cFaXpg4GawfLWBYq3JC7hFbdBxdSH791nbxHAIuUpDly3PuivJGbRb0abRId3qnKYWy0hFA2y+a1Ebh4c6dYh2wcDNYFPs42Vp3cBN+4t4t9aFgZsV6R20B7weJCMBzX82DW7jiJJtbba03/LsDEtjLG3jSIiLE2h16s17I2/elqQG1HpMmTHjZm3qFPbpee0v4mfaexN72HzXkjaODKHRkpjLa18ioeyawHPeqjaO6Jdt1QsDN4Px5m1t0aAPsaBPl6zL9GIFsaAPsZBf859Ng9s02g7cdLiI8+ZtberqwtMLJc1/9jTbwFjahuEh5CoNFKral0johYGbwdh81/omh0O6TZUyYLeuyXgIXo/QJePGHm7WtqkTuGn7wJav1JGvNnjeW5habz5lo6wbAzeDTS2w+a7VKalzfaZKeQG3Lp/Xg8l4SPOMW7MlMZ1j/z4rU4NqrafM1Mw9x966OmNvo15ujB4MNp2rcL9Ci9s8OoRT89pPmUwtVtgKxOI2jQxpnnGby1fRbEme9xYWDfowPOTXPHBTfx6zrdalV9CuJwZuBjuzUObCBIvbPBrGfKmuac1DtdHEXL7K/QotbtOo9v28znBBki3oUaQ+zYyb5U3ElH2KOVVKy5JS4swCl4Zb3eZR7VcXqlOvW0bDmv1M0t6mkSFM5ypoNFua/UzummAPm0ZCOKVxtvUMa5otz+f1YCIe0ry+UU8M3AyULdZQrjexJcELuJWpgZuW06Xqz1J/NlnTptGhTk2aVqa4a4It6JFxO7NQxniMNc1Wt0GnBWl64b8mA51sP81tZtbF0tTx0fLpW/1ZmxMceyvrrC7UcOxPL5Qx5PdieIhtYKxs44jSFiJfqWv2M09mS8yy24DderkxcDMQsy72oGxP49E84+b1CEzEuF+hlenRy+1ktowtiSEIwea7VqYG7Vr2cDw1X+b13gY2jgzhzGIFUmq/c4YeGLgZqJN14YlsaUIIzYvUT80rDVh9nDKxND0ybqfmmXWxg40aj3292cLUYhlbmGW3vI3DIdQaLaQLNbMPpSem3kWEEDcLIe4WQuSEEGsu4RNCjAsh/kUIkWl/zwNCiI1GHKsWTs2XMBL2s3O+DWweDWs6VXqaT962EPJ7kYoGNAvapZTKdBlv3pbXbcKrzdhPLVTQklyQZAdbk8oYndShDZQezH78nwfwdwDeudYbhRAhAHcAqAHYA2AEwKsAFPQ7PG0xbW4fSi83bTNurG20h00j2mVbF0p1FGtNnvc2MBYLwucRmtU6sTTGPtTg+mTWHoGbz8w/XEr5bQAQQlzbw9tfByVYe5uUUq0efUSXA9PJqfkydo1FzT4M6sHm0SFkizUUqw1EgoOdJtVGEzP5Ci/gNrFpdAgHpvKa/Cz1CZ4ZN+vzegQ2aNgShGNvH5ttFriZnXHrx3UAHgXwqfZU6QEhxLvNPqheSSmVWhe2ArEF9UTWIvMytVCBlFxNbBdqxk2LQuWTWeXfD6fL7GFrIowTGt28T82X4RHgNnc2MBTwYiwW1Gzs9WanwC0F4LkAHgSwAcCrAbxfCPGq5d4shHizEOJeIcS9c3NzBh7m8tKFGir1Fm/eNqFlLzcuSrGXzaNhVDUqVO5mXTj2drA1EdHs5n0yW8KG4SH2cLOJrYlw50HL6uz0LyoP4LSU8m+klDUp5b0APgfgF5Z7s5Ty01LK/VLK/WNjY4Ye6HJY72Av3cBt8BOZY28v6jhpcQM/meWCJDvZlgwjW6xp0svt1HyZAbuNbBkdYsZNBw8AWG7uwhaNV06x+a6tjEWD7V5ugwduJ+dL8HkEJrntjS1sS0YAACeyxYF/1sn5MqdJbWRrux5Nk6B9vsTrvY1sTYQxtVhGXcPt7vRidjsQb3u1aKD9+1D713KdKm8FkBRC/Eb7+/ZBWVX6JeOOeP3UCwGzLvag9nLTYqr0WFppB8EebvagNMsFjmc0mCbPsq7VTjqB24BjX200MZOrMmi3kc2JMFoStthBwew7yWsAlAF8G4C3/f9lANuEEK8SQnRafUgpjwN4IYBfA5AD8AUAt0gpbzP8qNfhaLqI8Vhw4BWKZJwto2FNbt7HMkVsS/ICbhdBnxcbh4cGHvtWS+LUAjNudqL28zo+YMatsyiFQbttaJlt1ZvZ7UBuhZJJW84xAJ8/5/3fA3CFnsekl2PpIranImYfBvVhRyqCe49lIaVc93ZFUkocSxdx5faExkdHetqeCuNYZrCp0ulcBbVGi+0gbCQe8mM07B/45n0srfzb2cFrvm2ogZsdFiiYnXFzjWOZEnYkeRLbyfZkGMVaE3P56rp/RrpQQ7HWxHZm3GxlWzIycMZNvXnv5M3bVrYmIwNPlR5l4GY7E/EQ/F5hi4wbAzcD5Ct1pAtVZtxsZke7WbJ6EV4PNWvDsbeX7e3VhYvl9a8uPKLevMc49nayLRHG8QEXphzNFDES9mMkHNDoqEhvXo/AlkS488BlZQzcDKA+uTPrYi9qhnSQKTP1IrCd2VZb6awsHSDzcjRdxJDfi4kYVxPbydZEGGcWKgOtLjw6V2S2zYZ2pqI4krb+LpoM3AygZmyYdbGXTaND8HsFjqbXf/M+linC61FWqJJ9bNcgaD/armv1eNZXH0nm2JoMo9mSOD1AK6BjmSJLY2zogrEIjmVKaLas3WWMgZsBmHWxJ69HYGsijKMDPIEdy5SwZZTd0+1GLVQ+PmC2dUeKWXa7uaBdInF4bn3nfbnWxNRihQ/qNrRzLIJaozVQ0G4E3k0McDRTxGQ8hKGA1+xDoT7tSEVwbJCMW7rYmXYj+xgKeDEZD+HYOqdK680WTmRLnC6zoV0DBm5qlpZjbz871bG3+HQpAzcDKK1A+ORtRztSERzLFNFaR+pcSonjmRJrG21qRyqy7pv3qfkyGi2JHamoxkdFehsO+5GKBvHE7DoDN64otS11zI7MWXuBAgM3AxzLlDhNalPbUxFUGy1M5Sp9f+9MropCtdF5iiN72T0RxRMzBUjZf9CuTq/z5m1PF4xF1h24HWFNs20lIwHEQz4cWecDm1EYuOksXagiW6xh1zhv3nak3niPruMJ7PGZPADgwomYpsdExtg9HkW+2sBMrv8+fuoTOwM3e9o1HsXhueI6g/YiUtEgotwlx3aEENg5FmXGze3Um/eeSd687UgNug62x7Ef3cCNQbsd7RpXxv7QbP9jf3iuiOEhpQs/2c8FY1EslutIF2p9f+/jM3nsmeQ5b1c7xyKWbwnCwE1nj08z62JnqWgQyUigM479ODRTQDISQDIa1OHISG9qwP34TP8X8YPTOeyZjK17qzQylzpD0m+NY6sl8fhMntd7G7tgLNopc7EqBm46OzhTwPCQH+Mx3rztas9kDAfWkXE7OJPHbmbbbCsZDSIRCeCJPjNuUko8PlPARcyy25YauPVb53YiW0Kl3sJejr1tqWP/+Dqu+UZh4KazQzN57Jngk7edXTgRw6GZfF8rS6WUeGK2wCdvm9s1Hu0743ZqvoxCtYE9k3Gdjor0tmE4hHDA23fG7SDrWm3v4g3KefvYVM7kI1kZAzcdSSlxcCaPC1nvYGt7J2Mo1Zo41UdTxjOLFRSqDezmBdzWLpyI4tBMvq8i9QPTrGu1OyEEdo9HcbDPEomDLI2xvc2jQ4gFfQzc3Go6V0G+0sAensS2dmH7BnxguvcTubMwgauJbW33eAy5SgOz+d5Xlh5s/zth4GZvF28cxiNncn0F7Qen89iSGEKEK0ptSwiBvRtiODDFqVJX4tOXM6jj10/NwyFOmTiCWqN4oI/My4H2zZvtIOztSZviWCzX+8q0H5zJY88Ep8jt7qINcRyY7q88xkgM3HTEwM0ZokEfNo8O9XXzfvRMDhPxIEYjAR2PjPR2ycZhAMDDpxd7/p4D07x5O8GT2mP/yJnexr7aaOJoushWIA5w0YY4CtVGX0G7kRi46ejnpxexaWSIN28H2DsZx6N91Dw8dHoRl24a0e+AyBDDQ35sS4Z7DtwqdeXmzVWF9rdnMgavR+Dh072d94dmCmi2JPZyUYrtXdReoNDPNd9IDNx09NCpRVy2edjswyAN7Ns8jCNzReQq9TXfm6/UcTRd5Ng7xJM2DePnPQZuj03l0GxJXLKRN2+7C/m92D0e7Tnj9sDJBQDAvs0j+h0UGWLPRAweYd2VpQzcdLJQquFEtoTLeBI7wr4tIwCAh0+tfRFXCpqBSzcxcHOCJ20cxqn5MhZKa3fRV2/el28d0fegyBCXbBzGw2d6u3k/dGoBo2E/tiSGdD4q0ttQwIudY9G+SiSMxMBNJw+1b/D7mHVxBDV79sCphTXfq57sT2Lg5gjq2D/YQ9D+wMkFTMSD2DDMm7cTXLIxjrl8FbO5yprvffDkIvZtGWHPTod48tYR3H9ifl371eqNgZtOHmw/eV/Cm7cjjIQD2J4Md8Z1Nfcdn8emkSGMcbcMR9i3ZQRej8B9x7JrvveBkwu4vJ2dJftTM+33n5hf9X3FagOHZvOcJnWQJ28dxXxJKXuxGgZuOvnx0Sz2TsYwPMRNpp3iiq2juO/46k9gUkr85GgWV+1MGHhkpKdo0IeLN8TxkzUCt0yhiuOZEi7fMmrQkZHeLt00jJDfgx8fXX3sf3ZiAS0JXMEpcsd4yjblPL7/xIK5B7IMBm46qDVauPd4Fk/bmTT7UEhDT9+ZRLpQw6FV9i88PFdEpljDVTsYuDnJ/u2jeODkAmqN1orvuedIBgAYtDtIwOfBk7eO4idrBG4/PJyGzyNw5XaOvVNcMBZFPOTDvT1k2o3GwE0HPz+9gEq9hafxAu4oT79ACcTvOZxZ8T3qBf6pOxi0O8lTtydQqbfw89MLK77nB09kEAv6cBnLIxzlqTsSeHQqt+qK8nuOZHDZ5mHumOAgHo/AVTuT+P4TacvVuTFw08EPn1Bu7Lx5O8uWRBibR4fww8PpFd9z96E5TMZD2J4MG3hkpLenX5CERwB3HZxb8T0/PJzGVTsT8Hl5WXWSp+1MQkrgh08sf94Xqg08dGqx82BHzvF/LhzDqfkyjliszo1XGB1857EZ7NsyggQb7zrOs3an8IMnMqjUm+e9Vqk3cdfjc7j+onGuLHOYkXAAT9k2ijsOzC77+vFMEcczJVx9QcrgIyO9PWXbKIaH/Pifx5Yf+7sfn0OzJfHMXWMGHxnp7Zrdypj+7+MrP7CZgYGbxs4slPHQqUU875IJsw+FdPD8J21AodrA9w+d//T9oyMZlGpN3HAxx96Jnr13Ao+cyWF68fzWEN94aAoA8Fye947j93pw3Z4xfPfALJrL7F35zYenkYwEcOV2Lkpxmq3JMHamIvjOozNmH8pZGLhp7FsPTwMAnnfJpMlHQnq4+oIkhof8+ObDU+e99l8PTSEc8OLpXJTiSM9pB+Rfe/D0ea9946EpXLF1BJtHOUXuRDdcPIFssYYfHTm7vrVSb+K7j83guZdMcorcoW66fCPuOZLB1KJ19i3lvzQNtVoSn//xcVy6aRgXjHGjYSfyez14/iWTuP3n05gvdjvpL5Rq+NqDZ/ALl29CyO818QhJL7vGo9i/bRT//pOTZxUrP3JmEY9N5fDiyzaaeHSkpxsumsBo2I/P3nP8rK9/7cEzKNaauPGyDSYdGentJVdshpTAl392/gObWRi4aeiuQ3M4PFfErz5zh9mHQjp64zN3oFxv4nM/6l7Eb/vpSVQbLbz26dtMPDLS2yuv2oqj6SLuPNitd/rknU8gFvThZU/ZbOKRkZ5Cfi9efuUWfOexGZyaLwFQHtQ//b9HcPGGOBcmONjWZBhP35nE//v+MRSrDbMPBwADN82Ua038xTcPYONwCC+8lE9fTrZnMobr947j03cfwemFMqYWy/i77x3Gs3ancNEGbi7uZC+6bAN2jkXwR197BKVaA/cey+L2h6fx2qu3sdm2w7326dvh8wj8ydcfhZQS//7TE3hitoC3XLOTi5Ec7refvwfpQhWfvPMJsw8FACCs1p9ED/v375f33nuvbj//C/edwqf/9zAOzRbw/153Ja7bO67bn0XWcCxdxIs/8X1Egsq0aKHSwNd+85mcIneBew5n8Mp//BF2JCOYzVeRiATwX+94JmIhBm5O95n/PYI//eZjuHhDHAdn8nj6ziT+9Y1PhcfDwM3p3vOfD+KL95/CDReN43dfsBe7xmO6/nlCiPuklPuXe43dAjUwm69gyO/F37/qyQzaXGJ7KoJ/e9NV+Mi3D6IlJX77eXsZtLnE0y9I4h9e/RR8+n+P4MKJGD7w4osYtLnErz1rB3xegS//7DRevn8L3v/CvQzaXOLPXvIkJKMB3P7wFPwmL0Rhxo2IiIjIQlbLuLHGjYiIiMgmGLgRERER2QQDNyIiIiKbYOBGREREZBMM3IiIiIhsgoEbERERkU0wcCMiIiKyCQZuRERERDbBwI2IiIjIJhi4EREREdkEAzciIiIim2DgRkRERGQTDNyIiIiIbIKBGxEREZFNMHAjIiIisgkGbkREREQ2wcCNiIiIyCYYuBERERHZBAM3IiIiIptg4EZERERkEwzciIiIiGyCgRsRERGRTTBwIyIiIrIJIaU0+xh0J4SYA3Bc5z8mBSCt859hV/xslsfPZWX8bJbHz2V5/FxWxs9meVb/XLZJKceWe8EVgZsRhBD3Sin3m30cVsTPZnn8XFbGz2Z5/FyWx89lZfxslmfnz4VTpUREREQ2wcCNiIiIyCYYuGnn02YfgIXxs1keP5eV8bNZHj+X5fFzWRk/m+XZ9nNhjRsRERGRTTDjRkRERGQTDNyIiIiIbIKB24CEEF4hxEeEEHNCiLwQ4otCiJTZx6U3IcTNQoi7hRA5IURjmddfK4Q4LIQoCSF+LIR4yjmv7xdC/KT9+mEhxKuNO3r9CCE+LIR4pP25nBFCfEYIkTjnPW79bP5UCHG0/dnMCiG+IITYuuR1V34uKiGERwjxQyGEFEJsXvJ1V34uQohbhRB1IURhya+3nfMeV342ACCEuEEI8aP255IWQvzdktdc+bm0r71L/72U2+fTk9uvO+NzkVLy1wC/APw+gMcB7AQwDOCLAG43+7gM+Hs/D8CvAHgjgMY5rz0TQBHAcwEEAfwOgBkA8fbrwwDmALyv/fpzABQAPN3sv5cGn8ufAbgCgB/AGIDbAXyVn40EgL0Ahtv/HwbwfwH80O2fy5LP5z0A/geABLDZ7Z8LgFsB/OMqr7v5s7kWwAKAl7X/biEAT3b757LM5/SnAB5x2udi+gHY/ReUHRl+dcnvL2hfeLebfWwG/f2vxfmB278A+OyS3wsAJwC8rv37N7R/L5a857MA/tnsv48On8+LACzysznvc4kA+CiADD8XCQAXAjgM4HKcHbi59nPB2oGbmz+bewD8BT+XVT8jH4ApAO9w2ufCqdIBCCGGAWwFcJ/6NSnlYQA5AJeZdVwWsA9nfyYSwM/aX1dfv7/9ddX9S153kusBPLTk967+bIQQrxRCLEJ5kv0tALe0X3Lt5yKE8AD4fwB+G0oWZSnXfi5tLxVCZIUQj7dLUqJLXnPlZyOEiAB4KoCKEOL+9jTp94QQ6i4ArvxclvGLULJo/9r+vWM+FwZug4m3/7t4ztcXlrzmRjGs/pms9bojCCFeCuBNUAIUlas/Gynlv0kphwFsgBK0/bz9kps/l98CMC2l/NIyr7n5c/kElOn1FIBfAnANgM8sed2tn80olHv3mwC8HsBGAP8N4JtCiBG493M511sA3CalXGj/3jGfCwO3weTb/x0+5+sjULJubpXH6p/JWq/bnhDil6HcZG6SUt6/5CXXfzYAIKWchvL5fKO9eMOVn4sQYheU2ra3r/AWV34uACClvE9KOSOlbEkpHwHwLgAvE0IE229x62ej3nf+WUr5kJSyBuDPodTVXg33fi4dQogLoMx2/MOSLzvmc2HgNoB2JH8CwJPVrwkhdkKJ0B9a4dvc4EGc/ZkIKLU7Dy55/YpzvueKJa/bmhDiDQA+BeBGKeWd57zs6s/mHD4otW4b4d7P5ZlQFrE8LIRIQ5maAYCH2iso3fq5LKfV/q9o/9eVn42UchHAMSi1kOe9DJd+Lud4C4AHpZQ/XvI153wuZhfZ2f0XlFWlBwHsgBKw/X8AvmX2cRnw9/ZCWcn0XACN9v+HoFxUnwmlhul6AAEA78XZq3dGoKze+e3269fDoqt31vG5vANABsCVK7zuys8GykPi2wGMt3+/GcCXARyFEsC59XMJtz8L9dfToNx89wOIuvVzaf/dbgYw0v7/3QB+COCLS15382fz2wBOAbi4ff78DpRC/GE3fy7tv18AwCyAt5zzdcd8LqYfgN1/QQlgPgogDSXV+iUAKbOPy4C/9+vbN5hzf21vv/5aAEcAlAH8BMBTzvn+K9tfL7ff92qz/04afS4SQL19wnd+nfMe1302UAK3b7YvqEUApwF8HsAFbv5clvmctmPJqlI3fy4Avgcg2/73chRK+5j4Oe9x62cjAPwJgGkodVh3Arjc7Z9L++92c/teHF3mNUd8LtyrlIiIiMgmWONGREREZBMM3IiIiIhsgoEbERERkU0wcCMiIiKyCQZuRERERDbBwI2IiIjIJhi4EREREdkEAzcioj4JIa4SQtwlhCgJIY4IIV5u9jERkTswcCMi6oMQ4joA3wVwN4AXAfhfAJ8VQuww9cCIyBW4cwIRUY+EEBEAhwD8vZTyg+2vBaHsT/sHUsq/NvP4iMj5mHEjIurdmwD4oexPDACQUlahbE69zayDIiL38Jl9AERENvIqAF8CUBdCLL1+RgDUzTkkInITZtyIiHoghBgB8BQAb4YSpC39NQbghGkHR0SuwYwbEVFv9gEQAH4BwJklX38qgE8C+JkZB0VE7sLAjYioN1va//2ulLKgflEIcROAPICfmnJUROQqnColIuqN+qDbUL8ghBAAbgbwn+1FCkREumLgRkTUm+Pt/+5Z8rU3QsnE/bnxh0NEbsQ+bkREPRBCBAAcAXAMwB8BuALABwH8ppTyH008NCJyEQZuREQ9EkI8DcCnoGTdDgD4Eynll8w9KiJyEwZuRERERDbBGjciIiIim2DgRkRERGQTDNyIiIiIbIKBGxEREZFNMHAjIiIisgkGbkREREQ2wcCNiIiIyCYYuBERERHZBAM3IiIiIpv4/wGvURIll6K/vgAAAABJRU5ErkJggg==\n",
"application/papermill.record/text/plain": ""
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "homodyne_noise_squeezed_state"
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAJWCAYAAADhgQvTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACZ4klEQVR4nO3deZxkV1k//s+pvWvr7qrqZfYlM5lJQjIJTAgE+CYhYSdRASGyg7KIiGyKImoUXBD8iiAqoF+jgBp/7CABMYQYICxJSEKWmUxmX3qrqu6ufT+/P27dqp6ZXqq67n4/79drXsl0VffcqTP33uc+5znPEVJKEBEREZH1ecw+ACIiIiLqDQM3IiIiIptg4EZERERkEwzciIiIiGyCgRsRERGRTTBwIyIiIrIJn9kHYIRUKiW3b99u9mEQERERrem+++5LSynHlnvNFYHb9u3bce+995p9GERERERrEkIcX+k1TpUSERER2YSpgZsQ4k+FEEeFEDkhxKwQ4gtCiK2rvP/5QohHhBBlIcTDQojnGnm8RERERGYyO+P2WQCXSynjALYDOAHgP5Z7oxBiJ4AvAfhzAMPt/35ZCLHdkCMlIiIiMpmpgZuU8oCUcrH9WwGgBWDPCm9/HYD7pJSfk1LWpJSfB3B/++tEREREjmf64gQhxCsB/D2AOIAGgHev8NZ9AO4752v3t79ORERE5HhmT5VCSvlvUsphABsA3ALg5yu8NQZg8ZyvLUAJ+M4jhHizEOJeIcS9c3NzGh0tERERkXlMD9xUUsppAJ8B8A0hRGKZt+Sh1LYtNQIgt8LP+7SUcr+Ucv/Y2LKtUIiIiIhsxTKBW5sPQATAxmVeexDAk8/52hXtrxMRERE5nmmBmxDCI4R4uxBivP37zQA+CeAYgAPLfMu/AtgvhPgVIYRfCPErAJ4C4F+MOmYiIiIiM5mdcXshgIeFEEUAPwZQAnCDlLIhhHiVEKKgvlFKeRjASwB8AMr06AcA/JKU8pjxh01ERERkPNNWlUopW1ACt5Ve/zyAz5/ztW8B+JbOh0ZERERkSWZn3IiIiIioRwzciIiIiGyCgRsRERGRTTBwIyIiIrIJBm5ERERENsHAjYiIiMgmGLgRERER2QQDNyIiIiKbYOBGREREZBMM3IiIiIhsgoEbERERkU2Ytlcp2d/phTL+4XuH8dNjWVwwFsWvX3sBnrRp2OzDIgMcnM7jY//zOI6mi7hi6wh+89m7sXFkyOzDIgN8/1Aan/rfw8gUarhmzxh+47pdiAZ5K3G6Vkvii/efwm0/PYl6S+KmfRvx+qu3w+sRZh+a6zDjRuvy8OlF/MLffh+3/fQkxuMhfP+JNH7p736Abz08bfahkc6+8+gMXvTxu3HPkQw2DIfwxftP44UfvxuPnsmZfWiks3+46zBe/U8/xpG5IhKRAP7+e4dx099+H+lC1exDIx01mi289wsP4re/8BDylQa8AvjgNx7F6//5J6g2mmYfnuswcKO+zRdreNO/3ouA14Nv/taz8K9vfCru+u1r8aRNw3jHv/+MN3AHe/RMDr/xb/fjko1xfPc91+Kf3/BUfOu3noWw34vX/r+fIFusmX2IpJP/emgKf3H7Ady4byO++95r8Llfuwr/9mtX4cxCGb/6L/ei0WyZfYikk4/fcQhfuv803nXDhfjWO5+FL/761fizX7oUdx9K4/e//LDZh+c6DNyob7d8/RGkC1V86jX7sWs8CgAYCQfwj6/dj+GwH++67QFexB2o0Wzhd774IOIhP/75DU9FIhIAAOwci+IfX3clFss1/NHXHjH5KEkP6UIVH/jKz7Fv8zD++uX7EPR5AQBX70rhIy/bhwdPLuAzdx81+ShJDw+dWsDf3vkEXvLkTfitG3ZDCAEhBF551Va8/bpd+MJ9p/C9g7NmH6arMHCjvjx4cgFffeAM3vJ/LsClm8+uZ0tGg/jgL1yCgzN5fOG+UyYdIenli/efwsOnc/jjmy7pBG2qizfG8bZrd+HrD57Bz07Mm3SEpJdP3vkEcpUGPvrL++Dznn3bePFlG/Dciyfw8TsOIcMpU0eRUuLPvvkYRsMB/PFNl5z3+m9evws7xyL4468/imZLmnCE7sTAjfryf7/zOJKRAN5yzc5lX3/eJZO4YusIPvY/h1BrMOvmFLVGC5/47hPYt3kYL7x0ctn3vPn/7EQiEsD//c7jBh8d6WlqsYzP/+gEXvbkzdg9ETvvdSEEfuf5e1FtNPHpu4+YcISklx8ezuBHR7L4zWfvQizkP+/1oM+L337uHhxNF/GNh86YcITuxMCNevbEbB53PT6H11+9fdmTGFAu4u+4fjemcxXc/vCUwUdIern94Smcmi93pkqWEwn68KZn7cTdh9I4MM06R6f47D3H0Wi18PZn71rxPbvGo3jxZRvxuXuOo1BtGHh0pKd/+v5RpKJB/MpVW1d8z/MumcSFE1H8/fcOQ0pm3YzAwI16dusPjyHo8+CVq5zEAHDN7jHsSEVw6w+PGXNgpLvP/+gEtiXDuPbC8VXfd/OVWxD0efDZe44bdGSkp2qjidt+ehI3XDSBLYnwqu99/TO2o1hr4is/O23Q0ZGejqWLuPPgLF511dZOTeNyPB6B11+9Awem8/jZyQXjDtDFGLhRT6qNJr7+4BRe8KRJJKPBVd/r8Qi86qqt+NmJBTw+kzfoCEkvT8zm8ZNjWbzyqVvhWaNn02gkgBv3bcRXfnYa5RrbBNjddx6dQaZYw6uftm3N916xZQQXbYjj3358woAjI739f/edhADWfFAHgJsu34hIwMuxNwgDN+rJ/z6exmK5jl+4YlNP7/+FyzfB6xF8+naArz04BSGAX3pyb2P/0idvRrHWxP88NqPzkZHevvHgFMZiQTxjV2rN9woh8PL9m/HoVA6H+MBma62WxFcfOINn7h7DRDy05vujQR9u3LcRt/98CpU6H9j0xsCNevLVB04jEQngmT1cwAFgLBbEM3el8NUHzrDuwea++fMpPHV7AuOxtS/gAPDUHQlMxIP46gMsVrazQrWBOw/O4kWXbui5O/6LLtsAjwC+/hDrW+3s/hPzODVfxi9evrHn77lx30YUa022BjEAAzdaU6HawP88NoMXXboBfm/v/2RefNkGnF4o4xE25LWtx2fyeGK2gBddtqHn7/F6BF582Ubc9fgsC9Vt7I7HZlBttPDiPsZ+PBbC03YmucLQ5r79yDQCXg+ee8nyK8iXc9WOBJKRAIN2AzBwozXd/fgcKvVWXzdvALhu7ziEAO54jE9gdvVfDynTpM9/Uu8XcAC44aIJ1JsS3z+U1unISG/feGgKk/EQnrx1tK/ve94lkzgyV8TRdFGnIyO93XFgFlftTPS1B62vHeh978AsW0HpjIEbremux+cQC/mwf1t/F/BUNIgrtozguwdY62RX//3oDK7c1vs0qWr/9lHEQj7ceYBBux1VG018/1Aaz71kYs0FKee6bo+y8phTZvZ0NF3Ekbkibrhoou/vvW7PGIq1Ju49ntXhyEjFwI1WJaXE9w7O4Vm7U+d1TO/F9RdN4MFTi5jNV3Q4OtLTXL6Kx6ZyuGbPWN/f6/d68H92j+G7B2fRYkd127nv2DzK9SauubD/sd+aDGPnWAR3HpzT4chIb3e0FxU9e+/qrX+Wc/WuFPxegbse59jriYEbrerxmQKmc5V1XcCB7snPzIv9/OAJZZrzWbt7W5ByrmfvHcdcvsoaRxu669Ac/F6Bp+1Mruv7r9szjh8dyaBUY42j3dzx2CwunIiu2bdvOdGgD/u3JXAXg3ZdMXCjVanTHdes0Xh1JXsnY5iMh/D9JzJaHhYZ4O5DaYyG/bhk4/Dab17GtXvGIASnzOzo7sfTeMq2UUT6qHFa6to9Y6g1Wvghz3tbKdeauO/4PK7ds77rPaCM/YHpPKYWyxoeGS3FwI1WdfehNPZMxDA53F+Nk0oIgaftTOBHRzJsC2IjUkrcfWgOV+9K9dwK4lzJaBB7JmL48VHWu9jJXL6KR6dyeNbu9WXZAaUlTMDnwT1HGLjZyc9OzKPWbOHp68y0AuiUVtz9OBcm6YWBG62o3mzhvuPzePoF6z+JAeCqnUnM5as4wlVmtnFotoDZfBXP6rFv30qetjOJ+47Po97kKjO7+OFh5Yb7fwYI3II+L67YMoKfMGi3lR8dycAjlMVF67VnIobRsB8/Ocax1wsDN1rRI2dyKNebuHJ7YqCfo9bJ/IhP37bx4/ZYXX3BYIHbU3ckUK438fPTi1ocFhngp8eyiAZ9uHhjfKCfc9WOBB45s4h8pa7RkZHefnQkiydtGkYs5F/3zxBCYP/2BH7KwE03DNxoRT85qty8r9yx/qcvANieDGMiHsSPj/BEtov7js9jLBbElsTQQD/nqTuUoJ9jbx/3HpvHFVtH1j1FrnrqjiRaUvm3RNZXqTfxwMmFdS9IWeqqHQkcz5Qwm2M3AT0wcKMV/eToPLYnw3338DqXEAJX7Uiyzs1G7j0+j/3bRiHEYDfvVDSIXeNR/Pgos612sFiu4+BMfuAsOwA8edsIfB7BzItN3N+ub3vazsHHXv33w+lSfTBwo2W1WhL3Hs9qcgEHlMzLbL6Kk1muNLK6mVwFp+bLeEqfDZdXctWOBO49No8m+7lZ3v0n5iEl+m62vZxwwIdLNw+zzs0m7j02DyGAp2wb/Jp/ycY4wgEvfsqx1wUDN1rWE3MFLJTquHKHNoHb5VtGAAA/O8lpE6u795gyRvs1Ctqfsm0UhWoDh+cKmvw80s99x+bh9QhcvnVEk5/31O0JPHhykVsg2cADJxdwwVgUw0Prr29T+bwePHnrKH5yjNd7PTBwo2U9cGIBADTLuuydjCHk9+DBkyxSt7r7js8j5PfgkgGL01X72kH7AycXNPl5pJ+fHsu2syXr6992rn1bRlBrtnBgmk2YrUxKiQdPLnQesLXw5G2jODidYxNmHTBwo2U9eGoBsaAPO5IRTX6ez+vBpZuG8QAzbpZ334l5XLZ5BP51bHG2nB3JCGIhHx5k4GZpzZbEQ6cW+95UfjVq0M6xt7ZT82VkijVNA7d9m4fRkuDOKTpg4EbLeujUIi7dPNz3BtOruXzLCB4+k+O0iYXVGi08NpXT9ALu8Qjs2zyCB08taPYzSXtH5goo15u4bPP6dspYzsbhEFLRAB48xUy7lanZcC3P+0vb/44YtGuPgRudp9po4sB0DpdtHtH05+7bMoJao4WD03lNfy5p5/GZPGqNFi7dpN3NGwD2bRnGgak8KvWmpj+XtPNQO7jScuyFELhs8wgeYtBuaQ+cXEDQ58GeyZhmP3M8FsKG4VDn3xVph4EbneexqTzqTYl9Gj55A92nOU6XWtfDp7W/eQPAvs0jaLQkp00s7OenFxEOeLFzLKrpz923eQSHZgsoVFnrZFUPnFzAkzYNa1Yeobps8zCDdh0wcKPz/Lx9ol2mYdocADaNDHHaxOJ+fnoRsZAP25JhTX/u5VygYHk/P72IJ20cHrjx7rku2zIMKbsPBWQtzZbEI2cWsU/jGRYAuGzzCI5lSlgscfcMLTFwo/M8eGoRyUgAG9e5sfxKhBC4eOMwHmXWxbIebt+8B228e67xeAgT8SAe4c3bkhrNFh45s4gnaZxpBdAJCJh5saaj6QIq9dbAW5wtRx17bnmnLQZudJ6HTysLE7S+eQPAxRviODSb5wIFC6o3W3hsOt8pKtbaxRvieHSKQbsVPTGn3Ly1XJigSrQfAvnAZk2PTik1xxdt0K6+TaWWXDBw0xYDNzpLrdHC4bkCLtqg/dMXAFy8MY56U+KJWTZjtRp1YYIeWRcAuGhDHE/MFlBtcIGC1fy8Xb6g59g/NsVFSVb02FQOPo/ArnFtaxsBYDjsx6aRITzGBzZNMXCjsxxJF1BvSuzVcHXRUhe3A0JmXqxHXTjwJB2mTAAlaG+0GLRb0YHpPEJ+D3aktOnbeK6LNsRxeK7AVcUW9NhUDrvGowj6vLr8/L2TMTZg1hgDNzrLgU7aXJ+b945UBCG/h9MmFnSwffPeplHT5XOp/6Y49tZzcDqP3eMxzRcmqC7awKDdqh6byul2vQfUoL3IoF1DDNzoLI9N5+D3Ct2evL0egb2TcTw6xZoHq3l8Rt+b9/ZkBEN+L7OtFnRgOq9pD69zqfVTHHtryRZrmMlVOzMherhoQxxNBu2aYuBGZzk4nceu8Zjm/XyWunhjHI+eyUFKqdufQf3T++bt9Qjs3RBjvYvFZApVpAtV3cojAGBbO2jn2FuLOh76ZtwYtGuNgRud5cBUHhfpeAEHlDq3XKWBM4sVXf8c6l22WMNcvoo9E/qO/UUbGLRbjbqTid5B+55JBu1Wo5Yt6LGiVLUtqZTHHODiFM0wcKOO+WIN07kK9up4EgPAhe3g4NAMT2SrMOLmDQAXTcaQqzQwxaDdMg7OGDT27ZWlDNqt47GpHMZjQSSjQd3+DCVojzNo1xADN+o40Ll565c2B4Dd7WXnh2ZY82AVjxt0897dDtpZ72IdB6fzSEQCGNPx5g0oqwsXy3XM5au6/jnUu0d1XpiguniDsrKUQbs2GLhRh7pkW++p0tFIAKloEIdmmXGzigPTeYyE/RiP6XvzVntFHWLgZhkHpvPYMxHTpeH2Urs59pbSaCo9O/WeYQGA3eMxzJfqyBRruv9ZbsDAjTo6T94637wB5SLOC7h1PD6Tx4UG3LyTkQBGw35m3Cyi1ZJ4fEbfRSkqNWjn2FvD8WwJ9abE7nGOvd0wcKOOxwx68gaA3RNRPDFTYOrcAqSUeHw6r+uqQpUQArvHY3iC2VZLODVfRqnWNCRwG4sFEQv5mGm3CDWI0mPHhHMxcNMWAzcCoNy8j8wWsHtC/5MYUDJu+WoD0zkWqZvt9EIZ+Wqjs2hEb7smonicQbslqOURRgRuStAe5c3bItRxuGBMn56dS20YDiES8HLsNcLAjQAAc/kq8tUGLhgzJnDbNa6uLOWJbDZ1YYIRGTdACdoXy3WkC6x3MZtarmBY0M7AzTIOzxYwGQ8hFvLr/mcJIXABx14zDNwIAPDEnPr0ZUzgduEEC5WtQr2YGlHrsvTP4ZSZ+Q7PKTfvaNBnyJ+3ezyGdKGGeRapm+7wXMGQaVLVrjEGbloxLXATQnxYCPGIECInhDgjhPiMECKxxve8VwhxWAiRF0IcEkK8zajjdbrDc0UAwAXj+qfNASAZDSIRCbCXmwUcmSsiGQlgOKz/kzeAznQ8L+LmOzJXxE4DpspUnVqnOY69maSUODxXNDZwm4hiOldBvlI37M90KjMzbk0ArwaQBLAPwGYA/7zSm4UQNwH4YwCvklLGALwWwEeEEM8x4Fgd78hcAeGAF5PxkGF/5i6uLLUEo2/e47EgYkEfp8lNpty8C6YEbhx7c03nKihUG4bUt6l2tWdz1CQBrZ9pgZuU8v1Syp9JKetSyjkAfwvg2lW+ZReAB6WUP2p//z0AHoIS9NGADs8VccFY1JAVpard41EcmmEndbMdSRewM2Xck7cQArsmopwqNVm6UEO+0jB07DeNDGHIzyJ1s3UWJhiZcesE7TzvB2WlGrfroQRiK/kPAHEhxDOEEB4hxLMAXAjgW4YcncMdni0Y+vQFKIFbrtLALDupm0ZdJLDDhLHnzdtcR+aMv3l7PAIXjEcYtJvMyFYgqq2JMAJeD6fJNWCJwE0I8VIAbwLwW6u8bRbAFwDcCaDW/u8fSSkfXuFnvlkIca8Q4t65uTmtD9lRyrUmTi+UDVuYoNrZ/vOOMHVuGvXmvTNldODGInWzHUkr553RY79rLIrDDNpNdXiugHjIp/s2Z0v5vB5sT4U59howPXATQvwygM8AuElKef8qb/0DAK8EcDkAP5Qp0ncJIX51uTdLKT8tpdwvpdw/Njam8VE7y5G08U/eALCjfcM4lmHgZhY1aN5pcNCujv1Rjr1pDs8WEPR5sGlkyNA/d9d4FGcWKyhWG4b+udT1xKyyotTI0hiA7WC0YmrgJoR4A4BPAbhRSnnnGm9/CoAvSykflYpHAHwFwIt1PkzHO9y5eRv75L1xZAgBrwfH0rx5m+VIugCvR2BrImzon7tdDdo59qY5ki5iRyoCj8fYm/eOdk0dH9jM88SssStKVbvGojiRLaHaaBr+ZzuJme1A3gHgowCeJ6X8QQ/f8gMAvyiE2N3+/osA/CKA1bJ01IMjcwUIAWxPGhu4eT0CW5NhHOXN2zRH5opK7YnP2EvB1kQYHsHAzUxH5gqGl0cAwLak8pBwPFMy/M8mIF+pI12oGp5lB5QHtpZUtlqj9TMz4/Y3AOIA7hRCFNRf6otCiFct/T2AjwD4MoDvtL/+bSgZt78w8Jgd6fBcEVtGwwj5vYb/2duTET55m+jIXNHwGicACPg82DQ6hKO8eZui2mji5HzZ8Cw70M228oHNHGrAbPSDOgBsa/+Zx3nNH4iZ7UCElNIvpYwu/bXk9c+f8/uGlPJ3pZTb2+/dKqV8j5SS3fwGdHjW2F5OS+0ci+BYpoRWiy1BjNZsSRzNGNvDbantyQgzbiY5kSmh2ZKmjH006MNYLMixN4kaMG9PGVseASypbU3zgW0Qpi9OIHNJKXE8U+ycUEbbnoyg1mjhzCJT50Y7s1BGrdEyZcoEUC7ix9JF9vEzQWenFLPGPhnhVKlJ1GyX0XWtADAa9iMW8jHjNiAGbi6XLtRQrDWxzYSTGOg+9R3jE5jhDpvUCkS1PRlBvtpAhi1BDKdmXcx6YNuWDHNFsUmOZUqYiAcRDhizP+1SQghsT0Y4TT4gBm4udyKrnEDbTLqAq13beRE3njpVZXTzXZUaNPDp23jHM8r+tLGQMfvTnmt7KoK5fBUFtgQx3PFM0ZT6NtX2FLOtg2Lg5nJqpsusjNtEPIghv5f1LiY4ni0hHPAa2oRzqe2sdzHN8UwJW5PmnPMAg3YzHU2XzA3ckmGcmi+h1miZdgx2x8DN5Y5nS/AIYPOoORdxIYQybcLAzXAnMiVsTYQNb8Kp2jw6BK9HMGg3wYlsybSHNaC7opElEsYqVBtIF6rYZsLCBNX2pNoShGO/XgzcXO54pqg0wjW4j9dSapE6Get4tmRKgbLK7/Vgy+gQp8kNVm00cWaxjK0mZl3UXm5sBWQsNcNp7lQp+/gNioGbyx3PlDoXUbPsSEVwIltCo8nUuVFaLYmTWfPHfjuDdsOdni9DSvPKIwAgEvRhnC1BDKcGS2ae92rQyFmW9WPg5nInsqVOU0SzbE9F0GhJnF5gSxCjzOarqDZapmbcgG4vN7YEMc7xrPk3b6AdtDPjZij18zbzmp+IBBALsiXIIBi4uViuUke2WDP1yRvoPvmfyDJ1bpROLyeTg/YdqQiKtSbmClVTj8NNTrSzLmYuTgCUXm5cmGKsY+kiUtEgokHjW4GohBDYnopw15QBMHBzsRMWSJsDwBYGbobrZF1MDtrVjN9Jjr1hjmfMXU2s2pYKI11gSxAjHcuUsMPEhQmqbckwM24DYODmYlZImwPARDyEgNeDk1lOlRrlZHs18abRIVOPY0tiqH08HHujnMgWTV1NrGLQbrzjmaLp13tAybSfmi+jzrrmdWHg5mJqoarZdU5ej8Cm0SGc5PJwwxzPlLBxZAh+r7mXALUNDW/exjmeMXc1sWoLx95Q5VoTM7mq6Vl2QBn7ZktierFi9qHYEgM3FzueKWIsFkTExHoH1ebRIV7ADXTcAitKASDk92I8FmTQbpBWS7YXJJk/9mqJxMl5ZluNoPZNM7u2EQA2dzLtPO/Xg4Gbix3PmNuEc6mtiTBPYgOdyBSxNWH+lAmg3MA5VWoMq6wmBpQNxyMBL897g5xqB8ibTS6PAJZkW/nAti4M3FzshMkNWJfakghjvlRHvlI3+1AcL1epY75Ut0TWBQC2jA5xYYpBrLKaGFBWF25JhNlB3yBqkLTFpF1yltowHILXI/jAtk4M3Fyq1mhhOlfBZqsEbp16F57IeuusJrbK2CfCmFpkobIRrLKaWLV5lNlWo5zMlhD0eTAWM3c1MQD4vB5sGA4x47ZODNxcanqxAimtkTYHlqww44msOzW7tcUiN+8to2G0JDC1wEJlvVllNbFqS0JZlMQGzPo7NV/GptEh01cTq7aMhjvTt9QfBm4upU5PWCVw28JiVcOon7EVipSBJYXKDNp1d3q+jMl4yPTVxKoto2GUak1kizWzD8XxTs6XLDFNqtqS4IK09bLG2UuG6xSqjljjRB4e8iMW8vFENsCp+TLiIR/iIb/ZhwKA/byMdGqh3GnBYgVcWWqcU/PlzgOyFWweDWM2X0Wl3jT7UGyHgZtLnVoowyOAyeGQ2YcCoF2oPBpmkboBTi+UsclCN+8Nw0PweQTH3gCn29NlVsFMuzHylToWSnWLBe3K2HO6tH8M3Fzq1HwJk/EQAj7r/BNQ6l14Euvt9HwZm0asc/P2egQ2jnDs9dZothckWSlwY1sIQ6gLQCw1VcqxXzfr3LXJUKcs9uQNdHu5sVBZP1JKnF4oW+rmDbDexQjTuQqaLWmpoD0S9CERCXBlqc7UmmYrTZWq0+TMuPWPgZtLnZ63Vq0LoJzI1UYLc/mq2YfiWLlyA4Vqw3qB2yj7eelNvUFa7YFty+gQx15nJzvNd61zzR+LBhHweXCKD2x9Y+DmQlacMgGYOjfCqQXls7VS1gVQgvZ0oYZitWH2oTjWaQvevAFgM3dN0d3JbAmRgBejYWssSAIAj0dg8wj3qF4PBm4uNLWoTJlYLXBTMwGn2c9LN5bNurSnTU4vcNpEL+pnu8EiC5JUW0bDOL1QRrPFEgm9KCtKw5bp4abazO3u1oWBmwupF/BNFmkFotrYzgKdZs2DbtTP1moZt00jSjDBwE0/p+ZLGIsFEfJ7zT6Us2xJDKHelJjN84FNL6fmS5Z7UAeUaXJm3PrHwM2FrLTZ8FLRoA/DQ36c4c1bN6cXygj5PUhEAmYfylnUoJ1jrx8rLkoBlo49Azc9SClxyoI1zYCSaV8o1VFgiURfGLi50Kn5EoQANoxYa8oEUC7izLroR20FYrUpk/GYsuk0Azf9WK0NjGoTg3ZdLZbrllyQBHSD9imOfV8YuLnQqfkyxmNBBH3WmjIBlIs4L+D6OW2xzvkqr0dgMh5i1kUnrZbEmYWK5WobgW7NHc97fXRLY6w39huHWSKxHgzcXMiKrUBUm0ZCrHHTkbJrgvUu4IByY+EFXB9zhSpqzZYlz/tYyI94yMfATSfqw9BGKwZunCZfFwZuLnRqwZqFqoCy2jFfbSBXqZt9KI5TqjWQLdYs+eQNABtHQrx566S7N7FVx36Iq8l1MrXYXk1swdKY8ViQJRLrwMDNZZotiakF6/VwU3FlqX5OW3RRimrjyBCm261qSFtqg1urZls3skRCN6cXygh4PUhFgmYfynl8Xo9SIrHIse8HAzeXmclV0GhJy7UCUbFQWT+nLFzrAig370ZLcucMHVi5zgloZ1t589bF1EIFG0ZC8HistSBJtWGYmfZ+MXBzGau2AlGpNxbWOmnvtEWb76o49vo5PV/GaNiPSNBn9qEsa+PIEBZKde6coYMzC2XLNV1eSsm2cpq8HwzcXMbqUyapaBABr4c3bx2cXijD7xUYj1nzIs5ebvqxah8vlRq0TzHrprmpxYolFyaoNo4MYWqxjBZLJHrGwM1lphaVJxurTpl4PAIbuLJUF6fny9gwPASvRadMNo6wLYReTi9Ys4ebqlPbysyLppotielcBRuHrTz2IdSbEukiSyR6xcDNZc4sKFMmVtv2Zim2hdCH1W/esZAfMbaF0JyUUmm+a9EsO8BGrHqZzSuLfSydcRtmS5B+MXBzmenFCjZY+OkL4AozvZyaL1n65g2oQTsv4FpaKNVRrjctffOeiAXhEcy2ak39PK3YCkTFEon+MXBzmTOLFUsXqgLKzXs2X0Wt0TL7UByj3mxhNl+19M0bYNCuB7U8YqOFz3uf14OJeIhBu8bULJaVM+3sJNA/Bm4uM71YtvTTF6AsnJBSyQ6SNmbzVUhp7Zs3wLYQepjOKZ/npOXHnkG71joZNwuPfXzIh3DAy6nSPjBwc5FyrYn5Ut3yU6XqE9iphZLJR+Ic04v2uXmzLYS2rLzl0VIbR4YYtGvszEIZsZAPsZDf7ENZkRCCQXufGLi5yHROuYBb+ekL6AYXMzk+gWlFnS6zS9DOthDamV6swOsRSEWt1zl/qY0jIUwtVNgWQkNnFiuWniZVMWjvDwM3F1FXbFk96zIZV45vilOlmplqZ12sPvZsC6G9qcUKJtp7QlrZppEh1JottoXQkNWb76o2Doc4VdoHBm4ucqZTpGztJ7BI0Id4yMcaNw1NLVYQCXgRD1mzc76KK8y0N50rWz5gB9gWQg9Wb76r2jgyhHShikq9afah2AIDNxexS50ToEzpMXDTjnrzFsLaWRe1LQQbMGtH2avSHjdvgEG7Vsq1JrLFmm0CN4AL0nrFwM1FzixWkIgELN18VzU5HOrU5NHgpmzQvw9Q2kJMxrnptFaklMrYx63/sMadM7Sl1olutHgXAYBj3y8Gbi4yvVjp1I9Z3YbhEGvcNDS9WLFFphUANowMcew1kis3UK43bTH2w0N+toXQkPo52uGBrTNNzvO+JwzcXOTMQtkWT18AMBEPIV1gE14tNNrNd+1QpAwoi1OYbdXGmU7Wxfo3byEENgwz26oVdeztsKpUfbDg2PeGgZuLTOdslHUZDkFKZa89GsxcoYpmS9pm7CeHQ5herEBKtoUYlFozZKuxZ9CuiTMLZQihPARbXcjvRSoaYBugHjFwc4lyrYkFGzTfVak3GharDq7bw836F3BAybiV603kKmzCOyi7jf1EPMT+jRqZWqggFQ0i4LPHbX4iHuL1vkf2GFEamJ0KVYFuXQZrnQbXybrE7RG0T7ABs2amF8vwegTGY3Y570OYzSsZYhrMdM76+1IvNRlnXXOvGLi5xJTNbt7MuGmns8m4bYJ2NmDWypnFCsZt0HxXNRkPodmSyBTYhHdQM7mKLaZJVRPDzLb2ioGbS6hFn3a5ecdDysbDvHkPbnqxjJDfg+Eh6+5XuJS68nmGYz8wO60mBrr1WKxzG9x0zj5dBADlvJ8v1dmEtwcM3FxCzVzZ5QlMCNEuVGax6qDUHm5Wb76rGo8re2ry5j24qUV7bHmkYqZdG5W6UtNsp6BdDTJnc8y2roWBm0ucWawgaZPmu6oNwyxW1YKd+vcBQNDnRSISYLZ1QJ3muzZZkAR0b94M2gejTjna5UEd6Na2cuzXxsDNJaYX7bFf4VKTcW57pQXl5m23sWe9y6BylQZKtaatxj4ZDcLnETzvB9SdYQmafCS928DArWcM3FzCbk/egHIiz3CF2UCaLYkZG/XvU00y2zowu/VwA9BeARvkzXtA6udnp0z7BGtbe8bAzSVsmXUZVlaYpbnCbN0yhSoaLWm7sWc/r8GpLYDs9sDG1YWD60yV2ui8j4d8GPJ7GbT3wLTATQjxYSHEI0KInBDijBDiM0KIxBrfMy6E+BchRKb9fQ8IITYadcx2Vak3sVi2V6EqwLYQWug2YLXXzXvDcAiZYg3VBleYrZfdmu+qJtmIdWDTi1WEA17Egj6zD6Vn3QVpHPu1mJlxawJ4NYAkgH0ANgP455XeLIQIAbgDQA3AHgAjAF4FoKD3gdqdukpnPGafegdgSWsAboOyblM2nC4DuMJMC1OLFXiEPc97Bm6DmWm3ArHLSnLVRDzIqdIemBa4SSnfL6X8mZSyLqWcA/C3AK5d5VteByVYe5uUMi2lbEkpH5FS5gw4XFubydtvhRHAjJsWpjvTZfYae64wG9zMorLlkc9rr4qYDcMhFGtN5Ct1sw/FtqZt1nxXNRlnxq0XVjqjrwfw0CqvXwfgUQCfak+VHhBCvNuYQ7M3Oy4NB4BEJICA18On7wFM5SrwewUSkYDZh9IXBu2Dm8nbb1EK0M0Os85t/ezWeFk1MRzCbK4KKbkgbTWWCNyEEC8F8CYAv7XK21IAngvgQQAboEyzvl8I8aoVfuabhRD3CiHunZub0/qQbWWmPd1kp6XhQLfmgTfv9ZvLVTEes+OUCVeYDWqmPfZ20y2R4DT5erRaErN5+2bcas0WssWa2YdiaaYHbkKIXwbwGQA3SSnvX+WteQCnpZR/I6WsSSnvBfA5AL+w3JullJ+WUu6XUu4fGxvT/sBtZDZXQcBnny2PlmJbiMHM5Cu2C9gBrjDTwmzOnmPPJryDyZZqqDclJjn2jmVq4CaEeAOATwG4UUp55xpvfwDAcvlT5lTXMNO+gNst6wK020LkeRKvl12zLlxhNphao4VMsWbPrAunSgdix/59qgmOfU/MbAfyDgAfBfA8KeUPeviWWwEkhRC/IYTwCiH2QVlV+iUdD9MRZnJVTNjw5g0AE7Egax4GYNesC8C2EIOYK9izPAIAQn4vhof8nT501B+71jQDSzJunCZflZkZt78BEAdwpxCioP5SXxRCvGrp76WUxwG8EMCvAcgB+AKAW6SUtxl83LYzY9N6B0C5+JTrTeSrDbMPxXbKtSZylQbGbTr2nCZfP/XmbdexV/Yp5s17PTq7Jtgw4zYWC0IITpWuxbTufFLKVeftpJSfB/D5c772PQBX6HhYjjSbq+KaC+335A0A4+2MwWyugnjIfjV6Zpq1aRsY1UQ8hNl8Ba2WhMdjv2l+M82qWRe7Ztq5c8a6zSxWIASQitrvmu/3epCKBtm7cw2mL04gfRWqDRSqDdvevNX6LDZi7d+MTRsvqzYMh1BvSmS4wqxvnbG34VQpwH5eg5jOKf37/Dbr36dSxp7X+9XYc2SpZ50nb5tewNXj5gKF/jkh4wawUHk9ZnIV+DwCibC9+vepJoZDSBeqqDdbZh+K7UznqrbaXP5ck8MhtgFaAwM3h+v0cLPplMl45+bNJ7B+2bV/n6oTtDNw65uymjho2ynmyXgIUgKzeZ73/ZpZtG9NM8Bsay8YuDmcmnWxa5FyNOhDJODlVOk62Ll/H9D9N8ubd/9m8xXbnvMAMDncrW2l/kznKp3Pz44mh0NYLNdRqTfNPhTLYuDmcDM2nyoF2MttvWbzStbFjv37AGAsqt68Gbj1a8bGbWCAJbWtDNr7Uqk3sViu23qqVK3JZaZ9ZQzcHG4mV0U44EU0aNoC4oGNx4N88l6HGZtuNK0K+DxIRAKdrDH1biZXtfXYqzdvBm79sXMPNxUz7Wtj4OZw6s3brlkXQHn65kncP7tnXQDlBs76xv6oWRc737yT0SA8ApjjA1tfuquJ7Tv2naCd5/2KGLg53Gy7SNnOJuJBzOQq3D2hT8pUqX0v4IDSkHOOGbe+zNq8DQwAeD0CyWiQD2x9msvbf+y72Vae9yth4OZwdt41QTURD6FSbyFX4e4JvSrVGshXGrbt46VitrV/MzZvA6MajzFw61dnMZqNA7fRcAA+j+DYr4KBm4NJKR0xXTYW4wqzfs3avA2MaiIexFy+ilaL2dZeOaHOCVADN57z/ZjNV+HzCIzatH8fAHg8AmPtPappeQzcHCxXaaBSb9n+Aj7BYtW+dfeqtHfQPh4LotGSmC9x94Re2b1/n2o8FuLNu0+zuSpSUfv271ONx4KYK3DsV8LAzcFmbb7RtIod9PunBrl2D9rZgLl/du/fpxqLBZEuVNFktrVnSv8+ewfsADAWC3GGZRUM3Bysu2uCvU/kbl8f3rx7NWPzTcZVLFTun1oeYeeV5ICSLW5JIFPked+rubz9F6MBytjPcYZlRQzcHMwptS6RoA/RoI837z7M5qsI+DyID9m3fx/AafL1mMlVbR+wA2wLsR5z+SrGHDD2Y9EgMsUa96pdAQM3B5vJO6POCVCb8PIC3qtZh2Rd1IUpfPrunRNWkgPoBCAc+97Umy1kijXHZNwAIM06t2UxcHOw2VwVsZAP4YC9sy6AMuXHGrfeOSXrEvJ7EQ/5OPZ9mM1VnfGwxmnyvqhBzpgTAjd1yzM+rC+LgZuD2X3Lo6XG4+zp1A+nZF0AZYECL+C9KVYbKFQbjhj7MU6V9sUJjZdV3PJsdQzcHMwJPdxUE/EQd0/ow1yu6ognb0Bpa8GsS2/UG91Y1P5jH/J7MTzk5827R51dExwQtKsZY573y2Pg5mBOmS4DlCewaqOFXJm7J6ylWG0g75CsC8DdE/rRvXnbP3AD2IS3H7MO2O5KlYoGIQTrG1fCwM2hpJTKCiOnXMA7qwt5EV9Lt4ebQ8a+vfURs61rU290Tsm2skSid+q1MeWAbKvf60EiHODYr4CBm0MtluuoNVu232Rcpfaim2aR+po6jZcdMvZjsSBqjRYWy3WzD8Xy5to3bydMlQLcPaEfs/kqRsN+BHzOuK1z26uVOWOE6TzOe/Jma4BezTgs48Zebr2bK1ThtflelUuNx5RGrMy2rm02V3XMwxqgXPPnOMOyLAZuDjXnoCJloBuAsq/P2pyy1ZmKjVh7N5evIhUN2H6vStVYLIhak9nWXswVnNEGRqWWSND5GLg51JyDevoAQCTgxZDfy4xbD2bzVQR9HsRD9u/fB7C+sR/KlkfOCNiBpWPP834tc7mKY673gHLvmstX0eJetedh4OZQTpsqFUJ0TmRa3VxeefK2+64JKu5V27vZvHPawADMtvZKSqlk3JwUtMeCaLQk5ks1sw/Fchi4OdSculelQ7IuQPsJjFOla1Kmy5xz844EfYgEvMy49WAuX3VMeQTA3RN6NV+qo96UDgvamW1dCQM3h1Iv4E7JugBAKhpgxq0HTrt5A8oCBV7AV9dsSWSKNWfdvDlV2hM1sHVCDzdVtwkvx/5cDNwcaq7grCkTAJwq7ZFjx57TZauaL9XQbDkr6xIN+hAOeDlVuoZO42UHjb36d+E1/3wM3BxqzmG1LgAwFg1hvlRHrdEy+1Asq95sYb7krKwLwGnyXjitrlXF3RPW1tmn1CEryYGlU6Uc+3MxcHMoRwZu7b9Ppsgb+EqyxRqkdEb39KVS0SDSfPJelXMDN06Tr8VJ212phgJexII+ZluXwcDNgerNFrKlmuPqnDq93PJcZbQSp968x2JB5KsNVOpNsw/FspzWu1E1FmeJxFpm8xWEA15Egs5ZjAZw7FfCwM2B1KyLE2/eADBXYOp8JY4N3KKsd1mL03o3qsZZ27qm2XzVUdk2FafJl8fAzYEce/NmseqaOjdvp2VdOkE7x34lc/mqI7Mu47EQCtUGSrWG2YdiWU5rvKwa4zT5shi4OZBTA7dUVNl/kYHbypw69t1pco79SpycdQHYhHc1c/kqxhy03ZVqvL3RPPeqPRsDNwdyaq1L0OdFPORj4LaKuXwVsaAPIb/X7EPRlLrYghm3lc3lnbXlkYr9vNY2m6s4Nmgv15soVJltXYqBmwM5tdYFYFuItTixhxsAJNvZVi5MWZkTV5ID3aA9zfN+WcVqA8Va05Fjz6B9eQzcHGguX0Us5LysC8AmvGtJ56tIOfAC7vd6MBr2c2HKKpy4YwbAwG0t3ea7Dqxxiyp/J5ZInI2BmwM59ckbUIpVGbitbK7gzJs3oATtzLgtr1JvIldpOPK8T0QC8AjevFfi5BmWVKydaS/wvF+KgZsDOfXJG1Dq9ngSr8zJQXsqymnylaQdfPP2egQSkQDHfgVqQKsu3nISZluXx8DNgdIOrXMClBsTWwMsr1JvIu/QrAvAafLVOHU1sSoVDWKO2dZlpR3aAggARsPtbCsDt7MwcHOguXzVcVseqbh7wsrUi5sTn7yB9rZXvIAvq7uS3Hl1TkB7mpxjv6y5Qg1CKFPKTqNkWzn252Lg5jDlWhP5qrOzLgB3T1iO07MuY7EgSrUmimwNcJ5Zh489g/aVpQtVjIYD8HmdeTtPRQPMtJ/DmSPtYk6udQHYhHc1Ts+6sN5lZXP5KoTotk1xGvXmzUas50vnq47NsgNqCyjOsCzFwM1hnP7kzW2vVubk1WUAx341c4UqEuEA/I7NugRRbbTYiHUZ6YJzS2OA9oI0nvNnceZZ7mJO3TVBlYwE4RG8eS9H/UycnHUBmHFbjpNXEwNLaluZeTlPulBzdOCWatc3MtvaxcDNYdSsixO3PwG6xapsDXA+pdbF79isCzNuK3N64MZp8pU5PeOWigaYbT2HM6/wLqbWujhxhZFKaQvBJ+9zOf3m3cm2MutyHif3bgSWBG4M2s9SqjVQqjU7jWqdqBu087xXMXBzmLl8FcmIc1cYAdyvdCVOD9w6jVh58z6LlNKxe9Sq1MCE5/3Z1LZIzs64Mdt6Lufe3V3KyT3cVCxWXd6cw6dMALaFWE6u0kCt0XJ04JYIByC47dV55hzcfFelXtP4wNbFwM1hnP7kDXQ76LNYtUtKiXS+5ugLOMDdE5ajfh5ODtp9Xg+SkQCnyc/Rbbrt3LHv7lfK817FwM1h0g6fLgOUm3et2UKuzGJVVbHWRLnedP7YM+N2HjfcvAFmW5fTGXsH17gx23o+Bm4OIqV0fJ0TsKQJL3dP6HD6rgmqFLOt58m0s1BOvnkDDNyWo9a4JSPOPe+ZbT0fAzcHyVUaqDVbSDn4JAa6wcksn8A63DBdBigZN7YGOJsazDj55g1w66PlpAtVDA/5EfA5+1bOoP1szh5tl8m4IG0OdHvU8SLe5fStzlSd1YUc+45MwfktgIDuzZvZ1i6lh5uzxx1g4HYuBm4Oki0qqeSE45+8lb9fhqnzDrdMlar7sDJw65or1JAIB+D1CLMPRVdjsSAq9RaKtabZh2IZTm++q2K29WwM3BxEbVCYdPiTdzzkh88jkCnyRFbN5avwegRGw84e++4KMwbtqoxrbt5swnuudKGGlMMf1gBmW8/FwM1B1IybU/eqVHnajVjT3D2hI12oIhFxQdal09OJC1NU6ULV8ec8gE6Awia8XWmH75ihSjHbehbTAjchxIeFEI8IIXJCiDNCiM8IIRI9fu+vCyGkEOIDeh+nnag1bk6vdQGUJzBm3LrShZrjM60AMNqeEmTGrStTdPYm4yq1losZN0Wl3kS+2nBNjRvAsVeZmXFrAng1gCSAfQA2A/jntb5JCLENwHsA/FzXo7OhTLGGWNCHoM9r9qHoLhnl8vClskV3ZF08HqG0BuAFvCOdd8fYj3Hro7O4pX8f0K3d5dgrTAvcpJTvl1L+TEpZl1LOAfhbANf28K3/BOD3AWT1PD47yhRrSLjgAg60M248iTsyxZrjF6WoxmJcYaYq15oo1pquuHknIkojVj6wKdSssxvGvpNt5XkPwFo1btcDeGi1Nwgh3gKgJKW8zZhDspdsseqK6TJAOZG5qrQr65KpUkC5UbHOSdHNujh/7H1eDxLhAG/ebeq0oRsWJ3RqW3nNBwD4zD4AABBCvBTAmwBcs8p7tgL4AICn9fgz3wzgzQCwdetWDY7S+jKFGjaPhs0+DEMko0GU600Uqw1Egpb4Z2yaakOpdXFT4PbEbMHsw7CETNE9WRegHbRzmhyAu4L2TraVYw/AAhk3IcQvA/gMgJuklPev8tZ/BPAhKeXpXn6ulPLTUsr9Usr9Y2NjWhyq5SlFys4/iYFuyxNm3ZauJnbLzTvA1gBtatbFNWMfY8ZN5aYaN5/Xg1FmWztMDdyEEG8A8CkAN0op71zj7c8B8GdCiLQQIg3gGQB+Twhxt97HaQetlkS2WHPFilKgOz2Q5srSTvDqlrFPRgOoNtgaAEBnZbVbHtjYQb8rXVAWo4X8zl+MBrQf2JhxA2DiVKkQ4h0A/gjA86SUP+3hW7ac8/v/D8DdAP5K62Ozo1yljmZLuufJO8Ll4arudJk7bt7qnpyZQhVRl0+Tu6lAHVBqndi/UTFXqLqivk3FoL3LzIzb3wCIA7hTCFFQf6kvCiFetfT3UspTS38BqALISSlnjD9061Fv3m6pc1LbH6h/bzfLFt3Tvw/ojj17uSk1P1E3ZV1i3dpWt0vn3bFPqUoJ3HjOAyZm3KSUq7Z4l1J+HsDnV3n9Wq2Pyc7U6TI39HMClgRufALrjr1L2oGk2M+rw011rUB37OfyVdcvSkoXqrhwImb2YRiGbYC6TF+cQNpwW9Yl6PMiFvLxCQzKzdvnEYgPueNG1g3aOfZK8113BOwA+3ktlS64Y8cMVSoaRKnGbCvAwM0x3FbrArDmQZVp71MqhLP3KVUtrXFzu0zRfdNlAKfJa40WFst1l13vGbSrGLg5hNoSYjTspos4m/ACyti7KesS8HkQD/lY34j2HrUuGns1UHH7PsWd1cQxF13vue1VBwM3h8gUqoiFfAj43DOkyQgzboAyVeqWRSkqZluBRrOF+ZK7pssS7N8IAJ2VtW4a+1Qn0+7usQcYuDmGUqTsnpMYUGqdmHVRLmRuWZSiSjLbimypBind0wYGULKtsZCvM8PgVm5qvqtiJ4EuBm4OkSm4p/muKhUNYr5UQ6PZMvtQTOWmxsuqZCTI6TIX1rUCzLYC6OzVO+aise9mW9099gADN8fIunK6LAAplcyDW1XqTRRctE+pihm3btbFdWMf4dh3Mm4uqnEL+b2IBtlJAGDg5hiZYtWF02WseXDbPqWqZDSIrMuzrZ2Mm4u65wNqiYS7sy7pfA3hgBfhgDtaAKmS0YDrp8kBBm6O0GpJzJfqrmnAqmIj1m7g5rapUjXbOl+qm30opulkXVx23iejQVc/rAHK2LttihxoZ1tdHrQDDNwcYbGs7FPqtps3G7EuLVJ22dhH2BYiXajB73VP42VVKhJAtlRDsyXNPhTTuHGGBWDQrmLg5gDqzcttJ3Jno3lm3JBwWdYlxaAd6UIVyUjQNY2XVclosJ1tde/YZ1y2a4IqFQ2wxg0M3BzBbXtVquJDPvi9wtUnsjr27su2MmjPFKquKk5XqQ+obq51ShfctxgNUO5x86UaWi7OtgIM3Bwh0ylQd9eJLIRQ2kK4+eZdbE+XhVw2XcaMW/vm7a6HNaD7kOLWoF2paXZf70ZAGftmS2Kx7N7aVoCBmyN0Ajc3PoG5vAmv2/YpVcVDfvg8wtU1bhmXFqinXL6aXK1pdmPQ3m3C697zHmDg5ghqxmnUhYGb25txKv373HcB93gEEpFAZ+sft5FSIl2ouW5RCtB9QHVrpt2tNc3A0k4C7jzvVQzcHCBbrGF4yA+/133D6fZGrJmiO6dMgPYKM5c+eeerDdSaLVdm3EbCAXiEe7c+cmtNM8BOAir33ekdKOPSQlWgm3GT0p3Fqpli1cVj794VZum8e7MuXjXb6tKxz7i0dyPANkAqBm4O4NaePoBy8642WihUG2YfiimyhZrrWoGo3NyMU715uzHjBsDVi5K6Y+++a/5o2A8hOFXKwM0B3LjBvKrzBObCE7lSb6JYa7o4aHdvM043Z9wAdy9KcnNNs8/rwciQH1mXPrCpGLg5QLZYc91elSr1xuXGBQpuXk0MKDVupVoTpZr7sq3p9tiPufS8T0Tcu2elm2uaAe6eADBws72m2tPHpTdvN68yyrq0+a7KzYXKasbNjVkXwN2ryTMF9y5IAtolEi4855di4GZzC6UaWtK9WZdOTycXps7TnbYA7sy6pFydba1iNOzirEskgHylgWqjafahGE7Z6syd13ugHbS78Hq/lDvPegfp7FXp0pt3p4u6C/t5ZQsunyp1cX2jknVx5zkPdB9W3Dhd6tbejSq3t4ACGLjZnjpFmHLpzTvg82B4yO/KjJubG3EC7u6i7uYWQIC7p8nd3LsRUB7WF8t11Jstsw/FNAzcbK6bcXPviezWJ7BMsYaA14No0F37lKrUrIMb6xvTLm4BBLh3mtztNc1AN9s678Jsq4qBm811si4uTp2nokHMuewCDqg93Ny3T6lqKOBFJOB1ZdCeLbq3BRDg3mny+VINUrq3rhXozi658YFNxcDN5tQL12jYb/KRmCcVDbiyGafbp0wAd2571Wi2sFCqu/phTf1377Yat4zLV5ID3aDVbef9UgzcbE5dXeZz6eoyQHn6duPTV8blWRdADdrdNfbzpToA99Y2AkA06EPA63Hd6kK317UC7q5vVLn3bu8Qbp8yAdxbrJopVF275ZEq6cJ+XurN283nvRDClbWt6t/Xzed9qlPb6q7zfikGbjaXLrh7aTjQfQKbL7nrIs6g3Z0bzXfbwPC8d1uJRNbFG8yr4kM++DzCddPkSzFws7ks65w6NzA3ncjlWhOlWtPVF3BAGftssYpWS5p9KIbpbHXG8951+5VmClUIAYyG3Tv2QggkXL57AgM3m2PWpfv0mXXRiaxOl6XcfvOOBtCSwEK5bvahGEbNMrn9vHfjVGm6WMNoOACvx50ryVVuXJS0lDsbQDlEp6ePi+sdgCUbzbvo6bs7ZeL2sVfbQlRdE8hkizXXZ12A7n6lUkrXtMTJ9tB4OZfLYXZ2FvW6cx9m3n91DC0JPPbYY2YfSt/8fj/Gx8cRj8fX/TMYuNlYp6ePS25YK+lm3NzzBKZmGtw+Xba0p9PuCZMPxiAZZl0AKNe9aqOFUq2JiEuaUGfWaLycy+UwMzODTZs2YWhoyLEB7YlsCaVaA3sn1x/8mEFKiXK5jNOnTwPAuoM3TpXaGG/eitFwAEK4q8atU+fk8qBdzbi5aYUZyyMU6mfgpunSzBr7lM7OzmLTpk0Ih8OODdoAwOcRaDTtV9cqhEA4HMamTZswOzu77p/DwM3G2BZA4fUIjIYDripUVuuc3D5N3sm2umrsGbgB3ZYYburllimsvhitXq9jaGjIwCMyh88j0JLStouShoaGBprKZuBmY+zp0+W2VUbZYg0BnweRgNfsQzHVaNgPIeCuoL1YdX2mFXBfI9Z6s4XFcn3NoN3JmTaVz6v8HRste/buHHSMGLjZGHv6dCUiAXdlXYpKkbIbLtKr8Xk9GBnyI+uirAtbACmWLkxxg/lOGxg+qPs8SujSsGnGbVAM3GyMPX26UtGAq5aHZwqrFym7iZuC9kazhYVy3fWriYFufadbsq1qo+kUH9Thay/M0brO7dFHH8X111+PcDiMjRs34g//8A/RbDZX/Z5HHnkEz3/+87Fx40YEg0Fs3boVv/Zrv4apqSlNj20pdyzFcSiuLuty080bUAvUefMG3LVX7XypzpXkbSG/F9GgzzULUzjD0tWdKtUucJufn8cNN9yAiy++GF/96ldx+PBhvOc970Gr1cKHPvShFb9vcXERO3bswGtf+1ps3LgRR48exR//8R/jvvvuw09/+lP4fNqHWQzcbCzTQ08ft0hEgpgv1dFotuDzOj+RnC7UcMFY1OzDsIREJIAn5gpmH4Yhstw14SzJqHse2LobzPOBzduZKtWuxu0f/uEfUC6X8aUvfQnxeBzPec5zkMvlcMstt+B3fud3VmzdcfXVV+Pqq6/u/P7aa6/F5s2b8dznPhcPPfQQnvzkJ2t2jKq+73BCiEuFEL8qhPh9IcQHhRDvEkK8SAgxqvnR0arYFqBLDWDnS85tOrkUx74r4cKbN8de4aZFSemCO1oAqVOPiUQCkUgEF110ET75yU+e9R6vR8AjBJoaTpXefvvteN7znndWgHbzzTejXC7jrrvu6utnJZNJAECtps+/zZ4ybkKInQB+HcCrAEwAaAFYAFAFMAIgDKAlhLgLwD8CuE1Kac/lHjaSKVZt14BQL2oGIlusYSzm7CfSUq2Bcr3JJ++2ZCSA+VINzZZ0fNlAJ+PGaXIAyudwar5k9mEYIluswusRGB7ym30ourrpppuwd+9efO5zn0MwGMTBgweRy+XOe5/PIzpTpc1mE1KuHsR5PB54PCvnqg4cOIBnP/vZZ31t69atCIfDOHDgAG688cZVf36r1UKj0cDRo0fxu7/7u7jyyivx1Kc+ddXvWa81AzchxD9CCdi+D+BPAPwQwCNSyuaS96QAXAngeQD+EsAtQohflVJ+X5ejJgBKjRufvBWdZpzFKoCYuQejs4xLnrx7lYgEICWw4ILt39Sx53mvSEUDePDUgtmHYQi1f5/HwQ8n6XQaR44cwVe+8hVceumlAIDrr79+2ff6vN3A7frrr18zK/a6170Ot95664qvz8/PY2Rk5Lyvj46OYn5+fs1jf+ELX4hvf/vbAICnPOUp+OY3v7lqoDiIXjJuFQB7pZTHV3qDlDIN4HYAtwsh3g3glwFs0uYQaTmNZgsLpbV7+riFmoFww5QZi5TPpgZrSpsMhwdunX1KnZ116ZVa49ZqSUcHNEC3BVC//vjrj+DRM+dnrIxw8cY4/ujGS3p+fyKRwJYtW/DWt74V73jHO3DddddhfHx82ff6PB7Um8rE3qc+9Snk8/lVf3YqlVrzz1+uvVKve+F+4hOfQDabxaFDh/ChD30IL3jBC/CDH/wAoVBoze/t15qBm5Ty7f38wPYU6W3rPiLqSbakNt/lzRtw1/Y33SJljj1wdluI3SYfi96yxSpGhvyuWIDTi2QkiGZLYrFcx6jDH2Tc0ALI4/Hgv//7v/H7v//7eOMb34hyuYxnPOMZ+PjHP44rrrjirPd6PQLlupJx27VrV09TpasZHR3FwsLCeV9fXFxcNhN3rt27lavPVVddhWc961nYsWMH/u3f/g1vfOMb1/zefvVa47YNwC8C2AagDuAEgJ8B+KmU0h3V4BbTzbo4O8PQKzUD4YaeTt2pUo494K5tr7jd1dk6uycUq84P3Io1XDY60vf39ZPxsoK9e/fii1/8Iur1Ou6++268733vw4te9CKcOnXqrOBLnSqVUmoyVbp3714cOHDgrK+dPHkSxWIRe/fu7evvsG3bNiQSCRw5cqSv7+tVLzVuvwzgXwE0AMwBiABQc455IcRtAP5CSnlUlyOkZXGD+bP5vB6Mht3RQT/DlhBn6WTcXNDPK+OC6eB+dPYrLdSwa/kZNcfIuqz9k9/vx7Of/Wy8+93vxitf+UosLCwgkUh0Xvd5PJBSoiWlJlOlL3jBC/CRj3wE+XwesZhSJ33bbbdhaGgI11xzTV/HfvDgQWQyGezYsaOv7+tVLxm3vwDw7wDeKqWsCSF8AGoAfgPABgCvAPBqIcTbpZT/rMtR0nk6N28XnchrcUsT3myxhqDPg7DL9ylVjS6ZKnW6bLGG3ePs36dyS4lEtdFEvtpwfGnMQw89hPe+9714xStegZ07d2J+fh4f/vCHsW/fvrOCNuDs3RP27Nkz8J/91re+FR//+Mfxkpe8BO973/tw5MgR3HLLLXj3u999VouQXbt24ZprrsE//dM/AQDe+973wufz4aqrrsLIyAgee+wx/OVf/iUuuOAC3HzzzQMf13J6CdwmAfyLlFI9M9SJ5B9LKe8H8IdCiF8F8LdCiKyU8qt6HCidTc0u8Om7yy0d9NXGy27fp1Tl93oQD/lcE7RzqrSr2wbI2dlWt5TGTE5OYmJiAn/6p3+KM2fOYGRkBNdddx0+/OEPn/fepbsnaPGpjI6O4o477sDb3/523HjjjRgZGcG73vUu3HLLLWe9r9FonLUN1v79+/GJT3wCn/70p1GpVLB161a89KUvxe/93u8hEolocGTn6yVw+ymAZwNYcQJZSvlP7Qa8fwSAgZsBssUaPAIYcXhPn364pYN+plhlwH6OZDTo+IxbsyUxX3LXdNla1H2anT72bimNGR8fx2c/+9me3tvJuGm47dXFF1+M7373u6u+59ixY2f9/uabb9Yts7aSXpYmvQ/Ae4QQ7xdCrPav5n4A/VXw0bqlXdDTp19u2f6GWZfzJSIBZB2ebZ0v1ZR9Shm0d/i9HoyE/Y6fKlX3Y2XQ3tXZ9qrpvl7/awZuUsofA7gRSk3bSQB/C2W6dIMQIiyECAghLgVwC4CDOh4rLZEtVnnzPsfSDvpOlinUHP/k3a+kC+ob2b9veW6obe3uUcugXaXHRvN20VMzICnlnQB2A/hzAE9pf/lrAPIAygAeALADwFu0P0RaTrZYYzuIc6gd9OdLzr2ISymVqVLevM+SjAbcM13GsT9LKhLsZKScyi1Tpf3wCAGvEI5/UF9OT33cAEBKWQLwMQAfE0IMA9gHYEv7ZxwH8AP2dDNOplDDRRu5T+lSiSUd9FMOfTIt1Zqo1Ft88j5Hop1tdXIH/c4G87x5nyURCeCww2tbM8Ua/F6BWLDnW7YreL0CDQ03mreLdf0rkFIuAvhfjY+F+pAp1pDik/dZUktbA0yYfDA64XTZ8hIu6KDPDeaXl4gG8JNjTs+2VpGMBLmS/Bw+jweNFmvcziOEeI0Qoq+GUUKIXUKIZ63/sGg19WYLi+W645eG9yvRaQ3g3Is4+/ctL+mCXm7qdBn3KT1bygW1rVyQtDyfR7DGbQXvAXBYCPFBIcS+ld4khEgKIV4lhPg6lO2wNmh1kHS2eTXrwimTs3SacTq4pxP79y3PDdteZYpVjIS5T+m53FDbmi5yQdJyfB531rj1sqr0cigtQa4D8DMhRE4I8WMhxH8JIb4khPiuEOIogFkAfwPgMIC9Usr/XO3nCiE+LIR4pP3zzgghPiOESKzy/he2/6y0EGJeCHG3W7N6apNZTpWerdPTycGtAZhxW143cHNu0K4sSOK4nyu5pLbVqTKFqmPrdgfha9e4rbXBvNP0uqr0NinlMwFcCOC3oawibUDZt3QGwL8AeD6ADVLKd0opT/fwY5sAXg0gCWWhw2YAq22ZNQrgEwB2ARgD8G8AbhdCbOnl7+AkrHNantrTydkXcK4uW456U3P6VCnr286XjDj/gY1TpcvzejyQkK7LuvW1OEFK+QSAJ7T4g6WU71/y2zkhxN9CCcZWev/nz/nS3wsh/gTAfij95VxDnQrkdNn5nN7TKVusIuT3IBzg6rKlRiNK3ZeTm/BmizVcMMZ9Ss+V7ATtzsy2lmtNlGpNPqwtY2kvN5+Ltm7uZXHCnBDiDiHEx4QQbxRCXCmECOtwLNcDeKjXNwshLoOSrXtYh2OxNPZzWlkyEnB0T6cM+/ctK+jzIhb0OTvjVqyxrnUZTq9v7Dyo83p/HnXbK60ybo8++iiuv/56hMNhbNy4EX/4h3941r6kVtHLY/vnADwJwM0A3gFl1wQphDgC4OftXw+1//uEXMdksxDipQDeBOCaHt8/DuALAP5SSnlohfe8GcCbAWDr1q39HpKlZYpVeD0Cw9yn9DyJSABH5opmH4ZuuGvCyhIO3vJM3aeUda3nU1fZph2abe0+qPOB7Vxa7lc6Pz+PG264ARdffDG++tWv4vDhw3jPe96DVquFD33oQwP/fC2tGbhJKd+l/r8QYgzAZe1fl7Z/PR/AUPstZSh1bz0TQvwygE8BuElKeX8P798I4DsA/hvA761y3J8G8GkA2L9/v6MmwLPFGkbD3Kd0OcloEPcemzf7MHST5eqyFSUiAcdOly209yllndP5fF4PRsN+xy5MYePllWm5X+k//MM/oFwu40tf+hLi8Tie85znIJfL4ZZbbsHv/M7vIB63TsP7vtaVSynnpJR3SCn/Wkr5RinllQCiUDaX/2UoOyv0TAjxBihB243tbbXWev92AHcDuF1K+fb1ZPecIF2oIcWTeFlO369UbcRJ50tGAo4tUO8sSGJd67ISDh57t5XGPPLII3j+85+PRCKBSCSCiy66CJ/85CeXfa+W+5XefvvteN7znndWgHbzzTejXC7jrrvuGvjna0mrhkCboWTe3trrNwgh3gHgowCeJ6X8QQ/v3wvg+wD+XUr53vUeqBNwhdHKEpEAWlLJUDiNsk8pM24rcfLClLTLbt79SkaDjq1vdNsG8zfddBO8Xi8+97nP4Wtf+xp+8zd/E/l8ftn3qvuV1uoNNBqr/2qtscPCgQMHsHfv3rO+tnXrVoTDYRw4cECzv58W1r00TQhxFYBfAfByKBsM1QD0c1X5GygtRe5cuo2HlDLa/vmvAvAp9fdQesltAvBOIcQ7l/yctyyz4tTRssUanrRp2OzDsKSlhcpOu9CVak1UGy3evFeQiAQxX6pBSum4rYG6N2+O/XKSkQAOzTpzv9JssYaAz4NIwPnLJtPpNI4cOYKvfOUruPTSSwEA119//arf4/MKvPymF+JHP7x71fe97nWvw6233rri6/Pz8xgZGTnv66Ojo5ift1b5TV+BmxDiSVCCtZsBbAcwD+DLAP4DwAiAVZvuLiWlXPXK2g7GPr/k928A8IZ+jtep0oUqb94rWNrPa7fJx6I1dcqE2dblpaIB1JsSuUrDcQt31Potjv3yktEAfnTEqTVuSuPlQR5Grr322vO+9vKXvxxve9vbUCqV8MIXvvC811//+tfj9a9/PdLpNF72sped9/qv//qv4xWveAVOnjyJ17zmNee9/p73vAc33nhjX8eZSCSwZcsWvPWtb8U73vEOXHfddRgfH1/1e7weDz740Y9hxL96Ri2VSq355y/3GVvxQXDNwE0IsRNKoPYrAC4BkAPwVQBvB/AdKWWj/b5f0PE4qa3WaCFfaTBwW4GTWwN0+/dx7JezdOydFrilO/uUcuyXk4gEsVCuo9FsOW5LMDeVxng8Hvz3f/83fv/3fx9vfOMbUS6X8YxnPAMf//jHccUVVyz7PT6PwKZtO7F7fPUehx7P6v8uRkdHsbCwcN7XFxcXl83EmamXjNsTAFpQ2m/8AYBvSimdd1e0iW6RsjtO5H51u6g77+mbbQFWt3Tbqx2pvha3W162WMNI2A+/w4ISraSi6n6ldYzFnHV+ZDQI3L73ve+t+Fo4HF719VQqterrW7ZsWfX1fu3duxdf/OIXUa/Xcffdd+N973sfXvSiF+HUqVPLBl8+r8DrXnYjfnrP91f9uWtNle7du/e8WraTJ0+iWCyeV/tmtl4Ct+MAtgF4BoAz7V8/0fOgaGVsxri60c5G8857tuBWZ6tTA1onri50U9ZlPZZmW50WuGWLVexI6tHz3tr8fj+e/exn493vfjde+cpXYmFhAYnE+duZ+zwCH/jzv8aG8OpTmmtNlb7gBS/ARz7yEeTzecRiMQDAbbfdhqGhIVxzTU8tZg3TSx+3HUKIp0OZKv0VAL8lhDgB4DYA/9lL7zXSTnevSmddnLTi93owPOTM/UrTnCpdlZqFdmLQnimyrnU1ibMy7TFzD0Zj2UINCZdk2R966CG8973vxSte8Qrs3LkT8/Pz+PCHP4x9+/YtG7QBSo3b9gt24eIN8YGmyd/61rfi4x//OF7ykpfgfe97H44cOYJbbrkF7373uy3Vww3ocXGClPIeAPe0V3NeDyWAezOA327voPAfAEp6HSR1MeuytmQk4Mibd7ZQw5Dfy31KV5B0cn1joYadY86a/tXS0kVJTlKpN1F00T6lk5OTmJiYwJ/+6Z/izJkzGBkZwXXXXYcPf/jDK36PVvuVjo6O4o477sDb3/523HjjjRgZGcG73vUu3HLLLev/oTrpd5P5FpRdC74jhHgrgBdCCeLeBSAMZTss0pG6D2fKJU9g65GIBBy52Th3TVhdyO9FOOB17FTplTuWzzjQuRk353Dbg/r4+Dg++9nP9vU9Wu5XevHFF+O73/3uwD9Hb+vOK0opa1LKr0gpXwGlj9trAHxTsyOjZWWLNfg8AvEhZl1W4tStj9LttgC0MqUJr7PGvtXep5Rjv7LRcABCOC/b6rbAbT26+5UOvu2VXWiyRElKWZRSfl5K2V/TFupbpqAUKVutr4yVJKNBx13AAaVImRfw1Tmxg/5CuY4W9yldldcjMBp2XomE+vdh0L4yX2e/UvdM+HFtuc1osTTc6ZT9SutoOWy/0kzBebtBaC3pwG2v1Ok/nverc+JetRz7tXk13K/ULhi42Uy2WO0U4tLyEpEAmi2JxXLd7EPRTGefUl7AV+XE/UrVrAvP+9U5cew7W52xpnlFHiHg9QhNatzsgoGbzTDjtrZkpy2Ec2qdirUmao0WFyesQV1RLKVzLuKsc+pNKhrstMxxigxrmnvi8wg0mqxxI4vKFriycC1ObMTanTLhk/dqEpEAao0WCtWG2YeiGXXsmW1dnSMzboUaRvusaXbSQ0uvvB6PraZKBx0jBm42Um00ka9yn9K1OHG/0k6RMoP2VTl57Ed53q8qEQlgoVRH3UGZl37LI/x+P8rlso5HZE0+j7BV4FYul+H3r38/ZQZuNtKpd2Cty6qSDuyg392nlDfv1Thx7LPFGoaHuE/pWlLtsZ8vOWns+1tJPj4+jtOnT6NUKrkq8+bzClusKpVSolQq4fTp0xgfH1/3z+HEuY2oN2/WuqxuNKw243TWBRzg2K9FnUp2UgNmLkrpTWJJicR4LGTy0WgjW6zhSZuGe36/ujXTmTNnUK87Z3HWWhbLdRQqDWBhCFbvlOX3+zExMTHQNloM3GyEPX16E/B5EAv5HNWINV3g6rJeOHHbq0yB/ft6oWZbHTX26wja4/G45fbW1Ns/ff8oPviNR/GzP3iOK0oKmHu3kU6RMqdK15RyWCPWbLGGcMCLocAAm/G5gFOnSlnbuDY1wHHK2NcaLeQrDS5I6kHKgef9ahi42QjbAvTOaSvMePPuTTjgQ8jvcVS2NVus8ebdA/WB1in7laq1egme92ty4qKk1TBws5F0oQa/VyAe4gz3WhIO66KeLlR58+5RMuKcbGurJZWgnQ9raxoZ8sPjoP1KuSCpd2rg5pSgfS0M3GxEXWHEfUrXpjZidQrevHvnpKCd+5T2ztPerzTtkLHnDEvv1F1FnHTNXw0DNxtRbt7MuvQiGQ1gvlRzzH6lmQIDt145aZpcnfLlNHlvktGAY6bJ1Z1feN6vzYmdBFbDwM1G0tw1oWeJSBDNlkSuYv8l8VIq02WsdemNkzaaz3A1cV+clG1lxq13AZ8HcYd1ElgNAzcb4XRZ79TPyQnTJoVqA7VmCynevHuSjAYcs09thjfvviSjQccE7dliDUIAI2GOfS+SDusksBoGbjaSYYF6z5y0yoiNl/uTiARRqbdQqtl/v1JuddafZCSAtEMK1DPFGkbDAXg9rGnuhZOyrWth4GYTlXoTxVqTF/AedZtx2v8izpt3fzr9vBxwEVd3gBhl1qUnyUgQuUrDEfuVZlnX2hcnlUishYGbTXDXhP6oNUFOSJ13Gi8z29oTJ2Vbs8UqYiEfAj5eqnuh1oHOO2Lsa8yy98FJJRJr4dXAJtQnb+6a0JvRiB+AQ7Iuap0TM249STho66NMsdZpdUBrSzmotjVTrDLL3odkJIj5Ut0xnQRWw8DNJtLcZLwvQZ8XsaDPMTdvgNnWXnUXptj/6ZtZl/44K9vKse9HIhJAsyWxWLZ/J4G1MHCzCTXjluITWM+U1Ln9L+CZQg2RgBchP/cp7QVv3u7V3avW3kF7syWxUK5zMVofnDL2vWDgZhMZZtz6pjRitf9JnC1WOUXeh2jQh4DX44jALcMWQH3p1LbafKp0vlSDlMyy98MpY98LBm42kSnWEPB6EA1yn9JeJSJBR5zEGWZd+iKEcES2VUqJeY59X4aH/PB6hO2zLmy+27/OfqU2P+97wcDNJrLtXRO4T2nvnLJfaaZQ4xR5n5yw7VWu3ECjJXnz7oO6X6ndx54bzPcvFWXgRhbDrEv/ktEA5os1SGnvVUaZYpVj36eEA4L2DPcpXZekAxqxciV5/0bV2labj30vGLjZRKZYY51TnxKRABotiVzZvh30O/uUski5L0kH1Dd2t7vi2PfDCdPkWdY0983vVfYrtfs0eS8YuNlEplBl2rxPTlhllK82UG9KTpX2yQn1jZwuWx8nTJOrgSd3zOhPyiX7lTJwswluMN+/hAN2T+A+peuTjAZQqjVRqTfNPpR1Y4H6+qSiQdv38MsUahge8sPv5S26H4lIgFOlZA3lWhOlWpP1Dn1ywp6V2U6dE6fL+pF0wAozTpetTyISQL7SQK1h3/1K+aC+Pkptq72D9l4wcLMB9R9iirUufUk6YOujNKfL1iXhgELlTLGGaNDHxst9ckIDZi5IWp9kNGjrce8VAzcb4HTZ+nQv4PZ9AuN02fo4ob6RuyasT4pj71rJdn2j0/crZeBmA+rNm20B+hP0eREN+my94TQDt/VJOKCLOm/e6+OUsef1vn/JaAAtCSw4fL9SBm42oBbaJjlV2je7rzBLF6qcLlsHJ0yTZwqsc1oPu499qyUxX6ozaF8HJ8yy9IKBmw0w47Z+yai9Azc+ea9PLOiD3ytsvjiBGbf1sPvClMVyHc2WZP++dVCTG3aeZekFAzcbyBZrCPo8CAeYdemX3be9yhR4814PIUQ722rPJ+9O42UG7X2Lh/zweQQyNm0Jol6vmG3tn92zrb1i4GYD6faUCfcp7V8iErDtBRxo75jBJ+91sXMT3kK1gVqzxZv3Ong8AqM2LpFgXev6dVtA2fea3wsGbjaQLVbZx2udEpEg5kv23a+UO2asX8rGWx91V5LzvF+PZCRg2+ky9u9bv1GbT5P3ioGbDXCD+fVLRQOoNyVyFfvtVyqlxHyJ02XrZeeFKZwuG4xS22rPrEuGNc3r5vd6MDzkt+153ysGbjaQKbBAfb3s3IwzV1H2KeXNe33sHLhxQdJgEhH77lmZZd/OgSQjAduWSPSKgZsNZIqcLluvhI1rHtRj5s17fZKRAArVhi33K+V02WCSNt6zUt0xI+jjYrT1SEadv+0VAzeLK9UaqNRbrHFbp6SNN5rvZF1Y57Qu6jljx6xbhmM/kGQkgHy1gWrDjkE7S2MGkWDGjczG7a4GY+fl4WmO/UDsPE2eLdQw5PdiiC2A1sXOQTsDt8G4Yb9SBm4Wpz55pzhdti62vnl3xp5Zl/VQywvSNpwm5817MN0SCfud90oLII79eiUjAcyXamg6eL9SBm4Wp9Y5sS3A+oT8XkQCXpvevJVjHo34TT4Se7Jz0J7hjhkD6W40b7+xzxarDNoHkIi09yst2W/se8XAzeLYFmBwCZtue5Uu1BBjkfK6cbrMvey6Z6W6YwZrmtfPzud9rxi4WZya6ufT9/olI/aseeA+pYOJh+y7XykDt8F0FiXZbKo0X2ULoEF1SyTsNfb9YOBmcdliFUN+L8IBn9mHYlt27euT4ZTJQIQQGA3bb8szKSVbAA0oPuRT9iu1WdDOHm6Ds/OCtF4xcLM47powOLs2YlUaL3PKZBB2HPtSrYlKvcW61gEIIWy5T7EaaHK3lPWz6zR5Pxi4WRx3TRhcot2Q0W77lXJ12eBSUft10OeuCdqwY1uILGuaBzYa5lQpmSzLm/fAUpEg6k2JfNU++5VKKTHPbOvA7Jhx44Ikbdhxo3numDE4v9eDkbCz9ys1LXATQnxYCPGIECInhDgjhPiMECKxxvc8v/09ZSHEw0KI5xp1vGbJFKqcMhlQJ3Vuo4t4rtxAoyU5VTogO3ZR581bG0kbribnjhnasOMDWz/MzLg1AbwaQBLAPgCbAfzzSm8WQuwE8CUAfw5guP3fLwshtut+pCZRipRrbL47oIQNezql2zdvZl0Go+5XaqetjzoryXnzHogdb97cMUMbSraVNW6ak1K+X0r5MyllXUo5B+BvAVy7yre8DsB9UsrPSSlrUsrPA7i//XVHKtaaqDZafPIekBr82KlQmXVO2rBjT6csC9Q1kYoGUag2UKnbJ2hnGxht2LUFVK+s1GPiegAPrfL6PgD3nfO1+9tfX9XBgwdx7bXXnvW1l7/85Xjb296GUqmEF77whed9z+tf/3q8/vWvRzqdxste9rLzXv/1X/91vOIVr8DJkyfxmte85rzX3/Oe9+DGG2/EwYMH8Za3vOW81z/wgQ/ghhtuwAMPPIB3vvOd573+Z3/2Z9i853JUTj2Gj7/7Q/j32NlP3x/72Mdw+eWX43/+53/woQ996Lzv/9SnPoU9e/bg61//Ov7qr/7qvNc/+9nPYsuWLbjtttvw93//9+e9/oUvfAGpVAq33norbr311vNe/+Y3v4lwOIy/+7u/w3/+53+e9/r3vvc9AMBHP/pRfOMb3zjrtaGhIdx+++0AgA9+8IO44447zno9mUzii1/8IgDg937v93DPPfec9frmzZvxuc99DgDwzne+Ew888MBZr1944YX49Kc/DQB485vfjJ8/egDTJ+bxzu9EMR4L4vLLL8fHPvYxAMCrX/1qnDp16qzvf/rTn44///M/BwC89KUvRSaTOev166+/Hn/wB38AAHjBC16Acrl81usvfvGL8d73vhcAzvt3B/T2b29y//PQLC3i3a/7JUTOaQVjxL+9q6++Gj/84Q/x/ve//7zX7fRv719v+xKmZ/K46a5hRII+w//tPf7442e93su/vfizXouAz4PXvfIVpvzbM/u6p9W/vU/e8meYnivg2d//MAI+JUdh9ete9EXvQzIaMO3fntnXPa3+7d3+4bciW6zh2q+Ndl63+3VvKUsEbkKIlwJ4E4BrVnlbDMDiOV9bAHDJCj/zzQDeDADBoD2nHNTpMr+Xa0gG4fcKAEC92TL5SHqnTuty7Aejfn51G+1byNXE2vB5uue9GrhZHZtua8PvFag3W5AAhNkHowNhdosEIcQvA/gUgJdKKe9c5X1fAXBMSvnOJV/7GwBbpJQvWe3P2L9/v7z33nu1OWAD/c+jM/i1f70XX3v7M3DZ5hGzD8fWLv7Db+FXnroVf/Dii80+lJ584o5D+KvvPI7HP/QC29x0rOjwXAHX/9Vd+OtX7MMvXbHZ7MPpyRtv/SlmchX81zueZfah2Np9x7N46d/fg1vfcCWu3TNu9uH05Oo/vwNPuyCJ//vyy80+FFu79QdHccvXH8V9H7jBtgu8hBD3SSn3L/eaqXcEIcQboARtN64WtLU9CODJ53ztivbXHSnD1WWasVszzkyxhljIx6BtQCkbbn3EptvaSNhs7NXFaMy2Di7RDtbstCCtH2a2A3kHgI8CeJ6U8gc9fMu/AtgvhPgVIYRfCPErAJ4C4F/0PE4zcWm4dpKRgK1OYmU1Mcd9UOrWR3YqVM4Wqxx7Ddht66NSZzEax35Qqc6CNHuMfb/MfJz/GwBxAHcKIQrqL/VFIcSrlv5eSnkYwEsAfABArv3fX5JSHjP2sI2TLdQQDnBpuBbs1kVd6d/HJ+9BCSEwarNebtkCM25aiAV98Hvts18pd03QTrcFlH1mWfph2uIEKeWqNYPtdh+fP+dr3wLwLT2Py0oyLFTVTCISwGNTObMPo2fZYg1bE2GzD8MR7JRtrdSbKNaaDNw0IIRAMhK0TYlEZ59Sjv3A1FkqOz2s94MFNBam1Lowba6FZDvrYvZinF6luUetZpQO+va6eTProg07NeHt7JjB835go2E/AE6VkgkyhWpnrp4Gk4gEUGu2ULDBfqWtlsR8qcbaRo0kbNSMU92WjVkXbSSjAaRtMvbdHTM49oPytfcrdepUKQM3C2MXbe3YqYN+rlJHsyU59hpJ2qjGTb3RMNuqjWTEPtnWLKdKNZW0Uba1XwzcLEpKiUyhxrS5RjrbXtngRE6rT94ce00kIgHkbbJfaffmzWyrFhKRoG2C9myxhoDXg2jQEn3xbS8ZCXaupU7DwM2iCtUGas1Wpw8VDSZho+XhWbaB0ZQaAM8X6yYfydqYddFWMhpAqdZEuWb9oF3t3yeEE3v9G0+pbbX+9X49GLhZVIa1LppSP0c7TJuoq+A49troZlttMPbFGvxegXiIWRct2GnsWRqjLTstTOkXAzeL6qwu43SZJpJR+0yVqseY4thrwk4d9LOFGkbDzLpoxU61rWz/pK1kJID5Ug1NG+1T3CsGbhalZl04XaaNcMCHIb+3s2rPytSbzCifvjXRzbZaf+yVmzfPea0kbFTbmi2y6baWktEgpATmS9Yf+34xcLOoLDNumkvYpBFrplBFPOSD38vTUwspG2Vbs8Uq20FoqDP2dnhg444ZmrJTXXO/eGewKHbR1l4yapPAjfuUaioe8sPrEbaob2Sdk7bsUtuq7pjBoF07dqpv7BcDN4vKFGqIBn0I+blPqVbs0tMpwydvTXk8AqNhe/Ry49hrKxr0IeD1WH7s2QZGe3aqb+wXAzeLYr2D9hKRoG1q3Dj22rLDfqXVRhP5aoNZFw0JIWyRaWdpjPY4VUqGy/DmrTn1Am71/UozxSpSMT55a8kOPZ3UPnNsuq2tRCRg+Y3muUet9kbDfghhj9rWfjFws6hMgXVOWktEAqg2WihauBlnsyWRLda4R63G7NDTqbPdFcdeU8mo9feq7Wwwz7HXjM/rwciQ3xblMf1i4GZRmWKVfbw01ilUtnDqfKFUQ0uCLSE0lowEkLZ41oV1TvpQxt665zywdIN5jr2WEjbap7gfDNwsSN2nlPUO2uq2hbDuDZyNl/WRiASRrzRQa7TMPpQVcbsrfdhhs/FMsQafRyA+xB0ztJSMBjlVSsbIlRtotCSfvjSmZjKsfBFPs/GyLjr7lVq4GWc368LATUuJaADlehOlWsPsQ1lRplBFMsodM7SWtEF943owcLOgtFrrwqyLppI2WGWkHhunybVlh7HPFmvwegSGh/xmH4qjpGyw5VmmUOPDmg7ssChpPRi4WVD35s0TWUt22P6ms9UZx15TCRs048wUlX1KPR5mXbRkhy3P0tynVBeJSBAL5ToaTeuWSKwHAzcL6t68eSJrKRzwIuT3WHqVUbZYg0cAI8y6aEo9l6x88+Z2V/pI2KG2tVDlg7oOkpFAe7/SutmHoikGbhaULnKFkR6EEEhGrF2smm7372PWRVtJG0yXsfGyPuwzVcqx15odHtjWg4GbBWUKVQihNBAkbVl9eXimUGXAroPhIXW/UiuPfY3Nd3XQzbhZc+xLtQbK9SbLI3TQ3T3ButnW9WDgZkGZglLr4vNyeLRm9UasbAOjD2W/Ur+1p8vYeFkXkYAXQZ/Hsuc9FyTpR51+tmrQvl6MDCwow31KdWP1VUaZYo1P3jqxcra11mhhsVzn2OtAKZGwbgNm9bhY46Y9OyxMWQ8GbhaUZr2DbpTNxquW3a80XWCBul6SEetufaT2l2O2VR9W3vaq07+PY6+50XBA2a/UokH7ejFwsyCuMNJPIhJEpd5CyYL7lVYbTeQrDU6Z6CRh4WzrXJ5ZFz1ZuUSis0ctx15zXo/AaDjAqVLSX4Y9fXSTtHDqXD0mXsD1YeXpMvXGwqBdH0kLT5OnuWOGrqxcIrFeDNwspt5sYaFU58pCnSQtvMKMWx7pKxEJIFdpoG7BZpwZbnWmq2TUuiUSmUIN0aAPIb/X7ENxJDvsVdsvBm4WM89NxnXVLVa1XuYlzV0TdKV+rvMWvIizzklfVi6RyBSrHHcdqUG7kzBws5g0l4brSs1opC2YOmdbAH0lLbzlWbpYRcDnQTToM/tQHMnKjVjZfFdfiQhr3EhnLFTVV8LKF3COva66zTitN/bpfA1j0SCE4I4ZelADIyvWOKYLVZ7zOkpGglgoOWu/UgZuFsM6J31ZuRlnplBD0OdBJMBaFz10M27Wu3lzukxfamBkyfO+WGOWXUedbGvJemO/XgzcLIZ1TvpSm3FaMutSqCHFrItuLH3z5nSZrqw6Td5qSWSLNS5K0ZETm/AycLOYTLEGv1cgHmKti16Ufl7MurjNyJAfHmHNqdIMp8t01VlNbrGxXyzX0WxJnvc6UoPirMXGfhAM3CxG3WScWRf9JCJByz15A2g/efMCrhePR7QLla0VtEspkWbvRl2FAz6E/B7LPbCxrlV/6nmVtuA1f70YuFkMNxnXn1WnSjOFGhKcMtFVKhq03IriQrWBWqOFFMdeV8lI0HLnfaeLAB/YdNNpum7BhSnrxcDNYtLcZFx3VmzIKKVEulBlkbLOlMDNWhfwzs07xrHXk9LPy1rnfbd/H6/5ehlp71dqtWv+IBi4WUymUOXTl84S0QDK9SZKtYbZh9JRrDVRbbSYbdVZMmq9ba+4a4IxrDhN3p0q5XmvF3W/Uk6Vkm44Vao/dUrKStMmvHkbIxUNIp23zrgDS/aq5Hmvq2QkaLkC9XShBiGA0TDHXk/JSMByYz8IBm4WUqo1UK43mTbXWadY1UKZF968jZGKBi2XbVWzLime97pKRpWsi5X2K80UqkiEA/B6uBhNT1bMtg6CgZuFsPmuMdQbpJWK1NWMG2/e+uoE7RbKuqnnPbMu+kpGAqg1WihaaL9SzrAYIxW1ZieB9WLgZiFp3rwNkYqpgZt1nsDUiwov4voaa59bcxYa+3ShiuEhPwI+Xo711GnEaqUHtmKV5REGSFhwQdogeKWwkAynywzR2bcwb52bt5pxSzDbqiv1oShjocAtU+CWR0boZNotNGXGjJsxEpEAFkp11B2yXykDNwthM0ZjhPxexEI+S2Xc0oUaYiEfgj7uU6qnbn2jdZ6+ucm4MayYcVNaAHHs9aY+GM07ZL9SBm4WkmaNm2HGLNaIVdlomhdwvVlxYQo3GTdGorNfqTXGvtZoIVdp8HpvgIQFOwkMgoGbhWQKNUSDPoT8zLroLRUNWqrOSdnqjBdwvQV9XsRDPotNlbLOyQid/UotUuuULbL5rlHUsXdKnRsDNwvhJuPGScUCFrt5s9bFKFba9qrRbGG+VOfYGyAc8GHI77VM1kXN+nLs9ZeMWCtoHxQDNwvJFLjJuFGSEevcvAE1aOeTtxGslG1VMwCcJjdGMmqd1YWZztjzmq+3zjS5Rc77QTFwsxAWKRsnFQ1isVxHrWH+KqNWSyJbrHGrM4NYKdva2aeUN29DJCPW2fKMu6UYZyQcgMdB+5UycLMQFikbR93Q2wqFygvlOlqStS5GsVK2lSvJjZWMBi1z82b7J+N09iu1yHk/KAZuFqFmXfj0ZYxOTycLdNBnDzdjWSnbyt1SjGWlRqzpYhUBnwfRoM/sQ3EFZezNf1DXAgM3i1gs19FsST59GaS77ZX5JzL3KTWWmm21wg28W6DOBzYjJCMBZArW2K80U1DKI4TgPqVGsFJ946AYuFkEp0yMZaWtj7jVmbHUrLZVgvaA14N4iFkXIySjAdSaLRSqDbMPRWkDw3PeMMlI0DIrigfFwM0iOkXKnDIxhJp1scbNm4GbkcbaY2+FoF25eTPrYhQrNWLNFNkCyEjJaIDtQEhbnDIxVjjgQzjgtUSNW7pQhc8jMDLkN/tQXKG7X6n5Y8+bt7Gs1IRXaf/E671REpEAFsvO2K+UgZtFqBuej8V4IhtFeQIzP+syl1eyLh4Psy5GSFqovpG7JhgraZF+XlJKzBWq7CJgIHXs5y0QtA+KgZtFzBWq8DLrYiilg775N+90ocaA3UCRgBchv6fzsGSmNHfMMJQatJtdpJ6vNlBrtHjeG0gdeytkWwdlauAmhLhZCHG3ECInhFizWlQI8V4hxGEhRF4IcUgI8TYjjtMIc3nl6YtZF+OkokFLTJUqY88LuFGEEEhFg6ZfwKWUSBc49kayytZHc5xhMVx39wTzr/mDMjvjNg/g7wC8c603CiFuAvDHAF4lpYwBeC2AjwghnqPrERqEWRfjWSfjVu2sciVjJC0w9vlqA9VGC+M87w0T8nsRCZi/X6kauDFoN04qap2m64MyNXCTUn5bSvnvAI708PZdAB6UUv6o/b33AHgIwD4dD9EwzLoYbywaQLZUQ8PEYtVWq5114c3bUGPRQOfmaRZmXcyRiJrfiFV9aODYG8dKK4oHZXbGrR//ASAuhHiGEMIjhHgWgAsBfMvk49IEsy7GS8WCkBLIlsw7kZVVTpJjbzArTJUy62KORMQ6Y8/z3jgjQ354PcIRGTc7dX2cBfAFAHeiG3C+U0r58HJvFkK8GcCbAWDr1q2GHOB6MetijqXbXo3HQqYcQ6eHG8feUGoX9VZLmlZXyoybOVKRAKYWK6Yew1xeaQE0zMVohvF4BFIWyLRrwU4Ztz8A8EoAlwPwQ5kifZcQ4leXe7OU8tNSyv1Syv1jY2PGHeU6MOtiDitse8Unb3OkokE0WxLzJmZbO9NlHHtDJSLmtwFSS2O4GM1YY7EgAzeDPQXAl6WUj0rFIwC+AuDF5h7W4FjvYA61WNXUwK0z9mwJYaSUBVoDzOWr8HuZdTFaMhpEtmjufqXpQpXXexOMRYOW2DFlUGa3A/EKIUIAAu3fh9q/lnsM+QGAXxRC7G6/9yIAvwjgfqOOVy+sdTFH0gId9LsZN3Omat1K7Z1mZi83Zl3MkYoGUG9K5Mrm7Vc6x8DNFMy4aeM1AMoAvg3A2/7/MoBtQohXCSEKS977EQBfBvCd9te/DSXj9heGHrEO5phxM0U85EPA6zE149bZZHzITuWm9qdOT5r59D3HHm6mUK+zcwXz6tzUvp1krLFYEOmCUttqZ2a3A7lVSimW+XVMSvl5KWV0yXsbUsrflVJul1JGpZRbpZTvkVLWzfw7aIFFyuZQGrEGzL15ty/g3GTcWFbYr3Quz6yLGdTPfDZnznnfaklk2LfTFGMWqG3VgtkZN4Ly5B3wehAPMetitFT7CcwsrHUxx3C7NYDZC1O4MMF44zFzs60L5ToaLS5GM8NYu3uA3evcGLhZQDqvPH0x62I8ZdsrszNuvIAbzezWAK2WRKbIrIsZOjdvk8a+U9PMsTdcZ5rc5nVuDNwsQKl1Yb2DGVLRgMk1bsy4mWUsZt4Ks/lSDc2W5NibIB7yIeDzYNbkwI0ZN+MxcCPNsNbFPGoHfTOKVdWsCzNu5hiPhUyrc1IDRo698YQQSlsIk27ebP9kHgZupBlmXcyjNmJdKBu/xoVZF3ONm5hx44Ikc43HzQvcOFVqnkjAiyG/l4EbDabZksiwLYBp1IunGdOlzLqYaywWRKZQRdOEbCsDN3OZmXGbK1QR9HkQC3IxmtGEEKaWSGiFgZvJssUaWpIXcLOMm9gaIJ1XVrNy7M0xHguiJYGMCRdxTpeZaywWxGzenD5uamkMF6OZwwlNeBm4mSzNrIupOoGbCRdxtQEoF6aYQ11daEaR+ly+iiG/F5GA1/A/m5T6xvlSHbVGy/A/m6Ux5jIz26oVBm4m45SJucbj5t28mXEzl5mFysy6mEsdezM2m2cLIHNxqpQG1pky4YlsimjQh3DAa8pUqVrrEmWtiynMzbayBZCZzNw9gV0EzDUWC2KhVEe10TT7UNaNgZvJuMLIfOMm1bsw62IuK2TcyBzjJo19o9lCtlTjg7qJOtlWE3fMGRQDN5Ox1sV847GQOVOlXE1sqpDfi3jIZ9LYc9cEM3U3mjd27LPFGqTkg7qZ1KDZznVuDNxMphaqMutinjGTejox62K+8bjxTXjrzRayxRrGoiFD/1zqSpl081YfEphxM48TmvAycDMZa13MNx4LYjZnzlQpM27mMqMJrzpFw6DdPAGfB6Nhv+ElEnNsA2M6s7KtWmLgZjLevM03HguhWGuiWG0Y9mfWmy1kijVMxDn2ZjKjn1enrpUPbKYyo59Xuv3njTNwM02yfd4x40brNpuvYiLOKRMzdVcXGnciqxcNjr25lGxrFVIat3uC2r+PWRdzmRG4cbcU8wV9XoyE/QzcaH0q9SYWSnVmXUw2HldbAxiXeZnlk7cljMdCqDZayBuYbWXvRmswY1HSbK6KaNCHIS5GM5Xdm/AycDPRXOfmzayLmcZN6KA/0w4SmXEzlxn9vLpTpQzczKRm3IzMts7mK3xQtwC7N+Fl4GYitbZmnCeyqcyYKmXGzRrM6Oc1k6tiJOxHyM+si5nGokHDs60zOZbGWIHd9ytl4GaimRzrnKxgJOxHwOsxtEh9NleBRwBJZl1M1ZkmN3DsZ3IVTDDLbrpuiYSxmXZe7803FlUWJRmZbdUSAzcTcbrMGoQQyhOYwRfwVDQIr4f9+8yk9lIzNOOWrzLLbgFGN2KVUmI2X2WW3QIm4iFU6sZmW7XEwM1Es/kq/F6B0bDf7ENxPaUthLFTpQzYzRcf8iHg8xgauM0y62IJRvfzWizXUWu0MM6xN50ZC9K0xMDNRDO5CsZjIe6aYAFG71eq1LrwydtsQoj22Btz8261ZDto59ibTV2UZFTQ3i2N4dibTX1wmjF41xStMHAz0WyOUyZWMR43NuM2l69gjHVOlmBkE95MsYZmSzLjZgHxIZ+hta0sjbEOdQymF5lxoz7N5iusd7CI8VgIC6U6qo2m7n9WvdlCusBdE6xi3MAVZurNmy2AzCeEUB7YDMq6dAI3jr3p1GvvjMG7pmiFgZuJuDTcOoxsC8H+fdZiZCNWNbvDoN0aJuIhw7IunRZAHHvThQM+xEI+Q1cUa4mBm0kq9SYWy3UGbhbRbQuh/4ms/hm8eVvDWCxoWLaVLYCsZTIe6mTC9DaTqyAe8rF/n0UYGbRrjYGbSdRIn9veWENn9wQDnsA4XWYtRmZb1bHneW8NE/EQpnPG9POa5QyLpUzGQ5wqpf50p0x4IluBmnGbM+BEZsbNWiaG1RVm+o/9TK6KVDQAv5eXXiuYHA6iVGsa0s9rJs82MFZiZH2j1nj1MAmXhltLMhKERxg0VcpdEyxlsrPCzJixZ6bVOjptIQyYMmMXAWuZaE+Tt1r22z2BgZtJuMLIWrwegVTUmCew2VyVuyZYyIZ2xm3aiIwbNxm3lEmD+nkp/fuYcbOSyXgIjZZEtlQz+1D6xsDNJLP5KgJeD0a4a4JlqPUueuOUibUMD/kR9HkwvVjW/c/iSnJrmTQoaJ8v1VBvSkywttEyOi1BbLh7AgM3k8zmKhiLBblrgoVMDhuzwmwmx/0KrUQIgQ3DIUzrnHVpNFtIF6rc8shCuh309T3vuZrYesYNGns9MHAzCadMrGfDcAhTBtS6zOUrrHWxGKU1gL4Zt3ShBilZ12olIb8Xw0N+3dtCqKsXed5bh523vWLgZhIl68KnLyuZiIewWK6jVNNvhVm10US6UMNkfEi3P4P6Nzms/zQ561qtadKAEom5HJtuW40668GMG/VsZrHSqa8ga+gUqev49K0uftgwwrG3ksnhEGYWq7r28+JeldY0MRzCrEFBOzNu1uH3epCKBhi4UW/ylTry1UYnUCBrmDQgcDuzoEzHceytZTIeQq3ZQrao3wqzGfbvs6TJeFD3jNtUroLRsB9BH3dNsJLxWIhTpdQbtY6KGTdr2TCsTF/qWeem3iAYuFlLp5ebjjfw6cUyvB7B/n0WMxkPYS5fRaPZ0u3PmFood64vZB1GLUjTGgM3E6iBwcYRnshWYsTN+8yCGrRz7K1k0oDdE6YWKpiIsX+f1UwMh9CSyuIRvUwtVrCR5RGWMxEPMnCj3kxxusyShgJejIT9mNJxdeH0YhmxkA/RoE+3P4P6pwZuemZbzyyWsYEPa5ajLhbR84FtarHCjJsFjcdCSBdqqDX0y7bqgYGbCaYWKxCCRcpWNBkP6br1kXIB57hbzVhU2fJMz62POPbWpHdta6nWwGK5zgVJFqRmQe2WdWPgZoKpxTLGokFuNG1BSiNW/TJufPK2Jp/Xg7GYfkXqUsr2dBnH3mrUB+jZvD5jr5ZHMGi3HvVarC4aswtGDibgk7d1TQ4P6bqqlGNvXZNx/RowZ4rKdAzH3nqSkQD8XqHbea+WXvCBzXrUBykjGq9riYGbCZh1sa4Nw0rNQ7XR1Pxn1xrKlkdcTWxNeq4wm+pkXXjeW43HIzAe0y9o7yxG49hbjjpVepoZN1qNlBJTC2XevC1KHZdZHXr7qEEBL+DWpNQ36jRd1s66cGWhNW0aGdLt5q0G7RPDbANjNeGAT/cFaXpg4GawfLWBYq3JC7hFbdBxdSH791nbxHAIuUpDly3PuivJGbRb0abRId3qnKYWy0hFA2y+a1Ebh4c6dYh2wcDNYFPs42Vp3cBN+4t4t9aFgZsV6R20B7weJCMBzX82DW7jiJJtbba03/LsDEtjLG3jSIiLE2h16s17I2/elqQG1HpMmTHjZm3qFPbpee0v4mfaexN72HzXkjaODKHRkpjLa18ioeyawHPeqjaO6Jdt1QsDN4Px5m1t0aAPsaBPl6zL9GIFsaAPsZBf859Ng9s02g7cdLiI8+ZtberqwtMLJc1/9jTbwFjahuEh5CoNFKral0johYGbwdh81/omh0O6TZUyYLeuyXgIXo/QJePGHm7WtqkTuGn7wJav1JGvNnjeW5habz5lo6wbAzeDTS2w+a7VKalzfaZKeQG3Lp/Xg8l4SPOMW7MlMZ1j/z4rU4NqrafM1Mw9x966OmNvo15ujB4MNp2rcL9Ci9s8OoRT89pPmUwtVtgKxOI2jQxpnnGby1fRbEme9xYWDfowPOTXPHBTfx6zrdalV9CuJwZuBjuzUObCBIvbPBrGfKmuac1DtdHEXL7K/QotbtOo9v28znBBki3oUaQ+zYyb5U3ElH2KOVVKy5JS4swCl4Zb3eZR7VcXqlOvW0bDmv1M0t6mkSFM5ypoNFua/UzummAPm0ZCOKVxtvUMa5otz+f1YCIe0ry+UU8M3AyULdZQrjexJcELuJWpgZuW06Xqz1J/NlnTptGhTk2aVqa4a4It6JFxO7NQxniMNc1Wt0GnBWl64b8mA51sP81tZtbF0tTx0fLpW/1ZmxMceyvrrC7UcOxPL5Qx5PdieIhtYKxs44jSFiJfqWv2M09mS8yy24DderkxcDMQsy72oGxP49E84+b1CEzEuF+hlenRy+1ktowtiSEIwea7VqYG7Vr2cDw1X+b13gY2jgzhzGIFUmq/c4YeGLgZqJN14YlsaUIIzYvUT80rDVh9nDKxND0ybqfmmXWxg40aj3292cLUYhlbmGW3vI3DIdQaLaQLNbMPpSem3kWEEDcLIe4WQuSEEGsu4RNCjAsh/kUIkWl/zwNCiI1GHKsWTs2XMBL2s3O+DWweDWs6VXqaT962EPJ7kYoGNAvapZTKdBlv3pbXbcKrzdhPLVTQklyQZAdbk8oYndShDZQezH78nwfwdwDeudYbhRAhAHcAqAHYA2AEwKsAFPQ7PG0xbW4fSi83bTNurG20h00j2mVbF0p1FGtNnvc2MBYLwucRmtU6sTTGPtTg+mTWHoGbz8w/XEr5bQAQQlzbw9tfByVYe5uUUq0efUSXA9PJqfkydo1FzT4M6sHm0SFkizUUqw1EgoOdJtVGEzP5Ci/gNrFpdAgHpvKa/Cz1CZ4ZN+vzegQ2aNgShGNvH5ttFriZnXHrx3UAHgXwqfZU6QEhxLvNPqheSSmVWhe2ArEF9UTWIvMytVCBlFxNbBdqxk2LQuWTWeXfD6fL7GFrIowTGt28T82X4RHgNnc2MBTwYiwW1Gzs9WanwC0F4LkAHgSwAcCrAbxfCPGq5d4shHizEOJeIcS9c3NzBh7m8tKFGir1Fm/eNqFlLzcuSrGXzaNhVDUqVO5mXTj2drA1EdHs5n0yW8KG4SH2cLOJrYlw50HL6uz0LyoP4LSU8m+klDUp5b0APgfgF5Z7s5Ty01LK/VLK/WNjY4Ye6HJY72Av3cBt8BOZY28v6jhpcQM/meWCJDvZlgwjW6xp0svt1HyZAbuNbBkdYsZNBw8AWG7uwhaNV06x+a6tjEWD7V5ugwduJ+dL8HkEJrntjS1sS0YAACeyxYF/1sn5MqdJbWRrux5Nk6B9vsTrvY1sTYQxtVhGXcPt7vRidjsQb3u1aKD9+1D713KdKm8FkBRC/Eb7+/ZBWVX6JeOOeP3UCwGzLvag9nLTYqr0WFppB8EebvagNMsFjmc0mCbPsq7VTjqB24BjX200MZOrMmi3kc2JMFoStthBwew7yWsAlAF8G4C3/f9lANuEEK8SQnRafUgpjwN4IYBfA5AD8AUAt0gpbzP8qNfhaLqI8Vhw4BWKZJwto2FNbt7HMkVsS/ICbhdBnxcbh4cGHvtWS+LUAjNudqL28zo+YMatsyiFQbttaJlt1ZvZ7UBuhZJJW84xAJ8/5/3fA3CFnsekl2PpIranImYfBvVhRyqCe49lIaVc93ZFUkocSxdx5faExkdHetqeCuNYZrCp0ulcBbVGi+0gbCQe8mM07B/45n0srfzb2cFrvm2ogZsdFiiYnXFzjWOZEnYkeRLbyfZkGMVaE3P56rp/RrpQQ7HWxHZm3GxlWzIycMZNvXnv5M3bVrYmIwNPlR5l4GY7E/EQ/F5hi4wbAzcD5Ct1pAtVZtxsZke7WbJ6EV4PNWvDsbeX7e3VhYvl9a8uPKLevMc49nayLRHG8QEXphzNFDES9mMkHNDoqEhvXo/AlkS488BlZQzcDKA+uTPrYi9qhnSQKTP1IrCd2VZb6awsHSDzcjRdxJDfi4kYVxPbydZEGGcWKgOtLjw6V2S2zYZ2pqI4krb+LpoM3AygZmyYdbGXTaND8HsFjqbXf/M+linC61FWqJJ9bNcgaD/armv1eNZXH0nm2JoMo9mSOD1AK6BjmSJLY2zogrEIjmVKaLas3WWMgZsBmHWxJ69HYGsijKMDPIEdy5SwZZTd0+1GLVQ+PmC2dUeKWXa7uaBdInF4bn3nfbnWxNRihQ/qNrRzLIJaozVQ0G4E3k0McDRTxGQ8hKGA1+xDoT7tSEVwbJCMW7rYmXYj+xgKeDEZD+HYOqdK680WTmRLnC6zoV0DBm5qlpZjbz871bG3+HQpAzcDKK1A+ORtRztSERzLFNFaR+pcSonjmRJrG21qRyqy7pv3qfkyGi2JHamoxkdFehsO+5GKBvHE7DoDN64otS11zI7MWXuBAgM3AxzLlDhNalPbUxFUGy1M5Sp9f+9MropCtdF5iiN72T0RxRMzBUjZf9CuTq/z5m1PF4xF1h24HWFNs20lIwHEQz4cWecDm1EYuOksXagiW6xh1zhv3nak3niPruMJ7PGZPADgwomYpsdExtg9HkW+2sBMrv8+fuoTOwM3e9o1HsXhueI6g/YiUtEgotwlx3aEENg5FmXGze3Um/eeSd687UgNug62x7Ef3cCNQbsd7RpXxv7QbP9jf3iuiOEhpQs/2c8FY1EslutIF2p9f+/jM3nsmeQ5b1c7xyKWbwnCwE1nj08z62JnqWgQyUigM479ODRTQDISQDIa1OHISG9qwP34TP8X8YPTOeyZjK17qzQylzpD0m+NY6sl8fhMntd7G7tgLNopc7EqBm46OzhTwPCQH+Mx3rztas9kDAfWkXE7OJPHbmbbbCsZDSIRCeCJPjNuUko8PlPARcyy25YauPVb53YiW0Kl3sJejr1tqWP/+Dqu+UZh4KazQzN57Jngk7edXTgRw6GZfF8rS6WUeGK2wCdvm9s1Hu0743ZqvoxCtYE9k3Gdjor0tmE4hHDA23fG7SDrWm3v4g3KefvYVM7kI1kZAzcdSSlxcCaPC1nvYGt7J2Mo1Zo41UdTxjOLFRSqDezmBdzWLpyI4tBMvq8i9QPTrGu1OyEEdo9HcbDPEomDLI2xvc2jQ4gFfQzc3Go6V0G+0sAensS2dmH7BnxguvcTubMwgauJbW33eAy5SgOz+d5Xlh5s/zth4GZvF28cxiNncn0F7Qen89iSGEKEK0ptSwiBvRtiODDFqVJX4tOXM6jj10/NwyFOmTiCWqN4oI/My4H2zZvtIOztSZviWCzX+8q0H5zJY88Ep8jt7qINcRyY7q88xkgM3HTEwM0ZokEfNo8O9XXzfvRMDhPxIEYjAR2PjPR2ycZhAMDDpxd7/p4D07x5O8GT2mP/yJnexr7aaOJoushWIA5w0YY4CtVGX0G7kRi46ejnpxexaWSIN28H2DsZx6N91Dw8dHoRl24a0e+AyBDDQ35sS4Z7DtwqdeXmzVWF9rdnMgavR+Dh072d94dmCmi2JPZyUYrtXdReoNDPNd9IDNx09NCpRVy2edjswyAN7Ns8jCNzReQq9TXfm6/UcTRd5Ng7xJM2DePnPQZuj03l0GxJXLKRN2+7C/m92D0e7Tnj9sDJBQDAvs0j+h0UGWLPRAweYd2VpQzcdLJQquFEtoTLeBI7wr4tIwCAh0+tfRFXCpqBSzcxcHOCJ20cxqn5MhZKa3fRV2/el28d0fegyBCXbBzGw2d6u3k/dGoBo2E/tiSGdD4q0ttQwIudY9G+SiSMxMBNJw+1b/D7mHVxBDV79sCphTXfq57sT2Lg5gjq2D/YQ9D+wMkFTMSD2DDMm7cTXLIxjrl8FbO5yprvffDkIvZtGWHPTod48tYR3H9ifl371eqNgZtOHmw/eV/Cm7cjjIQD2J4Md8Z1Nfcdn8emkSGMcbcMR9i3ZQRej8B9x7JrvveBkwu4vJ2dJftTM+33n5hf9X3FagOHZvOcJnWQJ28dxXxJKXuxGgZuOvnx0Sz2TsYwPMRNpp3iiq2juO/46k9gUkr85GgWV+1MGHhkpKdo0IeLN8TxkzUCt0yhiuOZEi7fMmrQkZHeLt00jJDfgx8fXX3sf3ZiAS0JXMEpcsd4yjblPL7/xIK5B7IMBm46qDVauPd4Fk/bmTT7UEhDT9+ZRLpQw6FV9i88PFdEpljDVTsYuDnJ/u2jeODkAmqN1orvuedIBgAYtDtIwOfBk7eO4idrBG4/PJyGzyNw5XaOvVNcMBZFPOTDvT1k2o3GwE0HPz+9gEq9hafxAu4oT79ACcTvOZxZ8T3qBf6pOxi0O8lTtydQqbfw89MLK77nB09kEAv6cBnLIxzlqTsSeHQqt+qK8nuOZHDZ5mHumOAgHo/AVTuT+P4TacvVuTFw08EPn1Bu7Lx5O8uWRBibR4fww8PpFd9z96E5TMZD2J4MG3hkpLenX5CERwB3HZxb8T0/PJzGVTsT8Hl5WXWSp+1MQkrgh08sf94Xqg08dGqx82BHzvF/LhzDqfkyjliszo1XGB1857EZ7NsyggQb7zrOs3an8IMnMqjUm+e9Vqk3cdfjc7j+onGuLHOYkXAAT9k2ijsOzC77+vFMEcczJVx9QcrgIyO9PWXbKIaH/Pifx5Yf+7sfn0OzJfHMXWMGHxnp7Zrdypj+7+MrP7CZgYGbxs4slPHQqUU875IJsw+FdPD8J21AodrA9w+d//T9oyMZlGpN3HAxx96Jnr13Ao+cyWF68fzWEN94aAoA8Fye947j93pw3Z4xfPfALJrL7F35zYenkYwEcOV2Lkpxmq3JMHamIvjOozNmH8pZGLhp7FsPTwMAnnfJpMlHQnq4+oIkhof8+ObDU+e99l8PTSEc8OLpXJTiSM9pB+Rfe/D0ea9946EpXLF1BJtHOUXuRDdcPIFssYYfHTm7vrVSb+K7j83guZdMcorcoW66fCPuOZLB1KJ19i3lvzQNtVoSn//xcVy6aRgXjHGjYSfyez14/iWTuP3n05gvdjvpL5Rq+NqDZ/ALl29CyO818QhJL7vGo9i/bRT//pOTZxUrP3JmEY9N5fDiyzaaeHSkpxsumsBo2I/P3nP8rK9/7cEzKNaauPGyDSYdGentJVdshpTAl392/gObWRi4aeiuQ3M4PFfErz5zh9mHQjp64zN3oFxv4nM/6l7Eb/vpSVQbLbz26dtMPDLS2yuv2oqj6SLuPNitd/rknU8gFvThZU/ZbOKRkZ5Cfi9efuUWfOexGZyaLwFQHtQ//b9HcPGGOBcmONjWZBhP35nE//v+MRSrDbMPBwADN82Ua038xTcPYONwCC+8lE9fTrZnMobr947j03cfwemFMqYWy/i77x3Gs3ancNEGbi7uZC+6bAN2jkXwR197BKVaA/cey+L2h6fx2qu3sdm2w7326dvh8wj8ydcfhZQS//7TE3hitoC3XLOTi5Ec7refvwfpQhWfvPMJsw8FACCs1p9ED/v375f33nuvbj//C/edwqf/9zAOzRbw/153Ja7bO67bn0XWcCxdxIs/8X1Egsq0aKHSwNd+85mcIneBew5n8Mp//BF2JCOYzVeRiATwX+94JmIhBm5O95n/PYI//eZjuHhDHAdn8nj6ziT+9Y1PhcfDwM3p3vOfD+KL95/CDReN43dfsBe7xmO6/nlCiPuklPuXe43dAjUwm69gyO/F37/qyQzaXGJ7KoJ/e9NV+Mi3D6IlJX77eXsZtLnE0y9I4h9e/RR8+n+P4MKJGD7w4osYtLnErz1rB3xegS//7DRevn8L3v/CvQzaXOLPXvIkJKMB3P7wFPwmL0Rhxo2IiIjIQlbLuLHGjYiIiMgmGLgRERER2QQDNyIiIiKbYOBGREREZBMM3IiIiIhsgoEbERERkU0wcCMiIiKyCQZuRERERDbBwI2IiIjIJhi4EREREdkEAzciIiIim2DgRkRERGQTDNyIiIiIbIKBGxEREZFNMHAjIiIisgkGbkREREQ2wcCNiIiIyCYYuBERERHZBAM3IiIiIptg4EZERERkEwzciIiIiGyCgRsRERGRTTBwIyIiIrIJIaU0+xh0J4SYA3Bc5z8mBSCt859hV/xslsfPZWX8bJbHz2V5/FxWxs9meVb/XLZJKceWe8EVgZsRhBD3Sin3m30cVsTPZnn8XFbGz2Z5/FyWx89lZfxslmfnz4VTpUREREQ2wcCNiIiIyCYYuGnn02YfgIXxs1keP5eV8bNZHj+X5fFzWRk/m+XZ9nNhjRsRERGRTTDjRkRERGQTDNyIiIiIbIKB24CEEF4hxEeEEHNCiLwQ4otCiJTZx6U3IcTNQoi7hRA5IURjmddfK4Q4LIQoCSF+LIR4yjmv7xdC/KT9+mEhxKuNO3r9CCE+LIR4pP25nBFCfEYIkTjnPW79bP5UCHG0/dnMCiG+IITYuuR1V34uKiGERwjxQyGEFEJsXvJ1V34uQohbhRB1IURhya+3nfMeV342ACCEuEEI8aP255IWQvzdktdc+bm0r71L/72U2+fTk9uvO+NzkVLy1wC/APw+gMcB7AQwDOCLAG43+7gM+Hs/D8CvAHgjgMY5rz0TQBHAcwEEAfwOgBkA8fbrwwDmALyv/fpzABQAPN3sv5cGn8ufAbgCgB/AGIDbAXyVn40EgL0Ahtv/HwbwfwH80O2fy5LP5z0A/geABLDZ7Z8LgFsB/OMqr7v5s7kWwAKAl7X/biEAT3b757LM5/SnAB5x2udi+gHY/ReUHRl+dcnvL2hfeLebfWwG/f2vxfmB278A+OyS3wsAJwC8rv37N7R/L5a857MA/tnsv48On8+LACzysznvc4kA+CiADD8XCQAXAjgM4HKcHbi59nPB2oGbmz+bewD8BT+XVT8jH4ApAO9w2ufCqdIBCCGGAWwFcJ/6NSnlYQA5AJeZdVwWsA9nfyYSwM/aX1dfv7/9ddX9S153kusBPLTk967+bIQQrxRCLEJ5kv0tALe0X3Lt5yKE8AD4fwB+G0oWZSnXfi5tLxVCZIUQj7dLUqJLXnPlZyOEiAB4KoCKEOL+9jTp94QQ6i4ArvxclvGLULJo/9r+vWM+FwZug4m3/7t4ztcXlrzmRjGs/pms9bojCCFeCuBNUAIUlas/Gynlv0kphwFsgBK0/bz9kps/l98CMC2l/NIyr7n5c/kElOn1FIBfAnANgM8sed2tn80olHv3mwC8HsBGAP8N4JtCiBG493M511sA3CalXGj/3jGfCwO3weTb/x0+5+sjULJubpXH6p/JWq/bnhDil6HcZG6SUt6/5CXXfzYAIKWchvL5fKO9eMOVn4sQYheU2ra3r/AWV34uACClvE9KOSOlbEkpHwHwLgAvE0IE229x62ej3nf+WUr5kJSyBuDPodTVXg33fi4dQogLoMx2/MOSLzvmc2HgNoB2JH8CwJPVrwkhdkKJ0B9a4dvc4EGc/ZkIKLU7Dy55/YpzvueKJa/bmhDiDQA+BeBGKeWd57zs6s/mHD4otW4b4d7P5ZlQFrE8LIRIQ5maAYCH2iso3fq5LKfV/q9o/9eVn42UchHAMSi1kOe9DJd+Lud4C4AHpZQ/XvI153wuZhfZ2f0XlFWlBwHsgBKw/X8AvmX2cRnw9/ZCWcn0XACN9v+HoFxUnwmlhul6AAEA78XZq3dGoKze+e3269fDoqt31vG5vANABsCVK7zuys8GykPi2wGMt3+/GcCXARyFEsC59XMJtz8L9dfToNx89wOIuvVzaf/dbgYw0v7/3QB+COCLS15382fz2wBOAbi4ff78DpRC/GE3fy7tv18AwCyAt5zzdcd8LqYfgN1/QQlgPgogDSXV+iUAKbOPy4C/9+vbN5hzf21vv/5aAEcAlAH8BMBTzvn+K9tfL7ff92qz/04afS4SQL19wnd+nfMe1302UAK3b7YvqEUApwF8HsAFbv5clvmctmPJqlI3fy4Avgcg2/73chRK+5j4Oe9x62cjAPwJgGkodVh3Arjc7Z9L++92c/teHF3mNUd8LtyrlIiIiMgmWONGREREZBMM3IiIiIhsgoEbERERkU0wcCMiIiKyCQZuRERERDbBwI2IiIjIJhi4EREREdkEAzcioj4JIa4SQtwlhCgJIY4IIV5u9jERkTswcCMi6oMQ4joA3wVwN4AXAfhfAJ8VQuww9cCIyBW4cwIRUY+EEBEAhwD8vZTyg+2vBaHsT/sHUsq/NvP4iMj5mHEjIurdmwD4oexPDACQUlahbE69zayDIiL38Jl9AERENvIqAF8CUBdCLL1+RgDUzTkkInITZtyIiHoghBgB8BQAb4YSpC39NQbghGkHR0SuwYwbEVFv9gEQAH4BwJklX38qgE8C+JkZB0VE7sLAjYioN1va//2ulLKgflEIcROAPICfmnJUROQqnColIuqN+qDbUL8ghBAAbgbwn+1FCkREumLgRkTUm+Pt/+5Z8rU3QsnE/bnxh0NEbsQ+bkREPRBCBAAcAXAMwB8BuALABwH8ppTyH008NCJyEQZuREQ9EkI8DcCnoGTdDgD4Eynll8w9KiJyEwZuRERERDbBGjciIiIim2DgRkRERGQTDNyIiIiIbIKBGxEREZFNMHAjIiIisgkGbkREREQ2wcCNiIiIyCYYuBERERHZBAM3IiIiIpv4/wGvURIll6K/vgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import matplotlib.patches as mpatches\n",
"from myst_nb import glue\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot()\n",
"\n",
"\n",
"s = 0.3\n",
"theta = np.linspace(0, 4*np.pi, 1000)\n",
"delA = 4*np.sqrt(1/4 - s*np.sqrt((1 - s**2)/2)*np.cos(2*theta) + s**2)\n",
"\n",
"ax.plot(theta*180/np.pi, delA, label=\"s = 0.3\")\n",
"ax.axhline(2.0, color=\"black\", linestyle=\"--\", label=\"s = 0\")\n",
"\n",
"#ax.set_ylim(0, 1.55)\n",
"ax.set_xlabel(r'$\\theta$', fontsize=15)\n",
"ax.set_ylabel(r'$\\Delta I$($\\theta$)', fontsize=15)\n",
"ax.tick_params(labelsize=13) \n",
"ax.legend(fontsize=15)\n",
" \n",
"#plt.gca().set_aspect('equal')\n",
"\n",
"fig.set_size_inches(10, 10)\n",
"\n",
"glue(\"homodyne_noise_squeezed_state\", fig, display=False)"
]
},
{
"cell_type": "markdown",
"id": "f30ef953-c8e0-4cc5-bdc7-e73e318c6e47",
"metadata": {},
"source": [
"```{glue:figure} homodyne_noise_squeezed_state\n",
":figwidth: 600px\n",
":name: \"fig-homodyne-noise-squeezed-state\"\n",
"\n",
"Noise of the differential output signal $\\Delta I$ as we scan $\\theta$. Note that depending on the value of $\\theta$ with the squeezed state input, the noise can be either significantly increased or decreased compared to the case of no input to port $b$ (i.e. pure vacuum state input corresponding to $s = 0$). \n",
"```"
]
},
{
"cell_type": "markdown",
"id": "07035483-e0bc-4bbf-bde1-f30e8b0f650e",
"metadata": {},
"source": [
"Now we have shown that the noise at the output of a Homodyne detector can be reduced by injection of a squeezed state. In the next section we examine how we can put this to use for quantum-enhanced measurements of mirror displacement."
]
},
{
"cell_type": "markdown",
"id": "173b3b27-f27f-4e22-ad63-4d5b88aac0ff",
"metadata": {},
"source": [
"## Quantum-Enhanced Displacement Measurements\n",
"\n",
"Myriad precision instruments use laser-based interferometers to characterize ultra-small changes in the displacement of an object. For example, precision stages sometimes use laser-based interferometers to obtain nanometer-level precision in their movement. A rather famous example of precision displacement measurements is for LIGO, where kilometer-scale interferometers are used to measure changes in path lengths that measure just fractions of the width of one atom. This marvel of measurements was made possible through incredible engineering which included the use of quantum-enhanced measurement techniques based on homodyne detection with squeezed states. \n",
"\n",
":::{figure-md} displacement-meas-setup\n",
"\n",
"\n",
"Experimental setup for a quantum-enhanced displacment measurement. \n",
":::\n",
"\n",
"In {numref}`displacement-meas-setup` we show how one can couple an interferometer to a homodyne detector for precision displacement measurements. There are three key inputs to this system:\n",
"\n",
" 1. A coherent state probe: $\\ket{\\alpha}$\n",
" \n",
" 2. A squeezed state input: $\\ket{\\psi_s}$, and\n",
" \n",
" 3. A coherent state local oscillator reference: $\\ket{\\beta}$\n",
" \n",
"If the path length difference between the two arms changes by a distance of $\\delta$, then this induces a phase change $\\theta = 2 \\pi \\delta/\\lambda$, where $\\lambda$ is the wavelength of the light being used (we have assumed all three input states are of the same central wavelength). With a bit of effort (which we will go through in detail in the example and problem set questions at the end of this chapter), we find that the measured output current. Assuming $\\delta$ is very small (much less than one wavelength), and for appropriate phase selection of the probe state $\\ket{\\alpha}$, the current can be approximated as \n",
"\n",
"$$ I \\propto \\frac{2\\pi\\delta |\\alpha| |\\beta|}{\\lambda}$$\n",
"\n",
"To see the general effect of squeezing, we can inject our example squeezed state into the system\n",
"\n",
"$$ \\ket{\\psi_s} = \\sqrt{1 - s^2} \\ket{0} - s \\ket{2},$$\n",
"\n",
"resulting in the following approximate noise current (assuming large $\\beta$)\n",
"\n",
"$$ \\Delta I^2 \\propto |\\beta|^2 (1 + 4s^2 - 2 s \\sqrt{2(1-s^2)} \\cos(2\\phi - 2\\pi \\delta/\\lambda).$$\n",
"\n",
"This then leads to a signal to noise ratio of\n",
"\n",
"$$ \\text{SNR} = \\frac{I^2}{\\Delta I^2} = \\frac{4 \\pi^2 \\delta^2 |\\alpha|^2}{\\lambda^2 (1 + 4s^2 - 2 s \\sqrt{2(1-s^2)} \\cos(2\\phi - 2\\pi \\delta/\\lambda)} $$\n",
"\n",
"As for the simplified case of heterodyne detection of a squeezed state discussed above, the injection of a squeezed state into an interferometer for displacement measurement also has the effect of reducing the background noise. This noise reduction occurs **so long as the homodyne detector is measuring the displacement along the appropriate quadrature where the noise has been reduced.** This is achieved by setting $\\phi = 0$, where $\\phi$ is the phase of $\\ket{\\beta}$. \n",
"\n",
"From a measurement perspective, we are interested in the value of $\\delta$ where $\\text{SNR} > 1$. This value becomes an important metric for the lower limit of detection of the system. So, again, let's pick the values of $s = 0$ and $s = 0.3$ as comparison points for the SNR as a function of $\\delta$. We assume a wavelength of 600 nm, and a probe photon rate of 100 photons per second."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "67641384-768e-4fac-80dd-c8a059c8a406",
"metadata": {
"tags": [
"hide-cell"
]
},
"outputs": [
{
"data": {
"application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAANOCAYAAAB6Kh+lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC84ElEQVR4nOzdd3hUZcKG8XsSUimhgxRpKogoSBVFQMWGvWBBRFRU1t4VV0Usi+tasRcUEARBVl0LIiqIigiIYgNEmvSikAAJqfP9MUs+s7QEAmeS3L/ryuXLOe+ceQbCmIdz5j2hcDgcRpIkSZIUmJigA0iSJElSWWcxkyRJkqSAWcwkSZIkKWAWM0mSJEkKmMVMkiRJkgJmMZMkSZKkgFnMJEmSJClgFjNJkiRJCli5oAOURnl5eaxYsYKKFSsSCoWCjiNJkiQpIOFwmI0bN1KnTh1iYnZ8XsxithesWLGC+vXrBx1DkiRJUpRYunQp9erV2+F+i9leULFiRSDym1+pUqWA00iSJEkKSlpaGvXr18/vCDtiMdsLtl6+WKlSJYuZJEmSpF1+xMnFPyRJkiQpYBYzSZIkSQqYxUySJEmSAmYxkyRJkqSAWcwkSZIkKWAWM0mSJEkKmMvlR5Hs7Gxyc3ODjqEyIjY2lri4uKBjSJIkCYtZVEhLS2PdunVkZmYGHUVlTEJCAtWrV/d+e5IkSQGzmAUsLS2N5cuXU6FCBapXr05cXNwubz4n7alwOEx2djapqaksX74cwHImSZIUIItZwNatW0eFChWoV6+ehUz7VFJSEhUrVmTZsmWsW7fOYiZJkhQgF/8IUHZ2NpmZmaSkpFjKFIhQKERKSgqZmZlkZ2cHHUeSJKnMspgFaOtCHy7AoCBt/f5z4RlJkqTgWMyigGfLFCS//yRJkoJnMZMkSZKkgFnMJEmSJClgFjNJkiRJCpjFTNoDc+bMoUePHtSoUYOkpCQOPfRQnnjiCfLy8nbreFOnTqV79+5UrVqVChUq0L59e4YNG1bMqSVJkhRtLGbSbpo2bRpt27blrbfeonHjxpx++umsW7eOm2++mfPOO49wOFyk47399tt07tyZjz76iMMOO4yTTjqJ+fPn06dPH26++ea99CokSZIUDSxm0m7IycmhV69epKen8/jjj/PNN9/w5ptvMn/+fDp27Mi4ceMYOnRooY+3fv16Lr30UnJzc3nrrbeYPHkyb731FnPnzuWAAw7giSeeYNKkSXvvBUmSJClQFjNpN7z99tssWLCAli1bctNNN+Vvr1ChAs8++ywAjz/+eKGP98orr5CamsoZZ5zB2Wefnb+9Vq1aPPLII0U+niRJkkoWi5mizpw5c7j44otp0qQJiYmJ1KhRg1atWnHjjTeycuXKoOMB8P777wNw7rnnbrPv8MMPp3Hjxvz0008sXrx4j493yimnkJiYyCeffMKWLVt2P7QkSZKilsVMUWXWrFm0adOGkSNHUqNGDc466yw6dOhAVlYWTz31FPPmzQs6IgCzZ88GoHXr1tvdv3X71nm78sMPP+zwePHx8bRo0YItW7ZEzeuXJElS8SoXdABtXzgcJiM7N+gYRZIUF0soFNqjYwwePJiMjAzGjRtX4JI+iJxJq1y5cqGOM3nyZI455pgiPXeXLl2YPHlyoeb+/vvvANSrV2+7+7du3zpvZ9LS0tiwYcMujzdz5kx+//13WrZsWaiMkiRJKjmispj9+uuvjBgxgo8//pgFCxawZcsWmjRpQo8ePbjxxhspX758oY7z7bff8ve//52vv/6avLw82rRpw/3330/nzp23mZuVlcXDDz/MsGHDWLZsGbVr1+aCCy5gwIABJCcnF/dL3KWM7Fya3zthnz/vnvjl/hNJjt+zb6k1a9YAcOyxx26z7+CDDy70cWrXrs0ll1xSpOdu1qxZoedu2rQJYIffG1u/R7fOK8yxiut4kiRJKnmispi9+uqrPPPMM5x22mn07NmT+Ph4Jk2axN13382YMWOYNm0aSUlJOz3GjBkz6NKlCzVr1uSee+4hISGBl156ieOOO47x48fTrVu3AvN79uzJuHHjuPjii+ncuTOzZ8/mscceY+bMmUycOJGYGK/63BfatGnD+PHj6d27N3fffTdt27bdrd/7Zs2aFWlVxN21ozOERVkqvzBzi7r0viRJkkqWqCxm5557LnfeeWeBy9b69evHgQceyEMPPcSrr77KNddcs9NjXH/99cTExDBlyhT2339/AHr37s0hhxzC1Vdfzbx58/J/qJ4wYQLjxo3juuuuY/DgwfnHaNiwIbfeeitvvPEGvXr1Kv4XuhNJcbH8cv+J+/Q591RSXOweH+O2227jyy+/5L333uO9994jJSWFDh06cOqpp9KnTx8qVqxYDEn3XIUKFVi/fj2bN2/e7v709PT8ebvy19eUnp5OpUqV9uh4kiRJKnmispi1bdt2u9vPO+88HnroIX788cedPn7hwoVMmzaNPn365JcygJSUFPr27cvAgQP55ptvOOKIIwAYOXIkALfcckuB41x99dXcc889jBgxYp8Xs1AotMeXBZZElSpV4rPPPuOrr77ivffeY/LkyXz66ad8/PHHDBo0iC+++IImTZrs8jhz587l4YcfLtJzN2vWjDvvvLNQc/fff3/Wr1/PsmXLOOyww7bZv2zZsvx5u1KpUiVSUlJITU1l2bJlNG/efI+OJ0mSpJKnRP3kv3z5cgBq1qy503nTp08H4Mgjj9xm39Zt06dPzy9m06dPp06dOjRo0KDA3KSkJFq1apV/PO0boVCITp060alTJwDWrl3LDTfcwKhRo7jrrrt48803d3mMVatWMWzYsCI9b5cuXQpdzFq2bMns2bOZNWsW3bt332b/rFmzALZb2nZ0vClTpjBr1qxtill2djY//fQTCQkJNG3atFDHkyRJUslSYj44lZuby/3330+5cuW46KKLdjp3a4Hb3gp3W7dtPQOxdf7OVsNbv359/qVk25OZmUlaWlqBLxWfGjVqcN999wHs8mzpVl27diUcDhfpq7ArMkLk3mIAb7311jb7vvvuOxYuXEjz5s1p1KjRHh/v/fffZ8uWLRx33HEkJiYWOqMkSZJKjhJTzK6//nqmTZvGfffdt8uzBltLVEJCwjb7tv5g+9eilZ6evt25O5r/vwYNGkRKSkr+V/369Xf+YrRDL7zwAosWLdpm+/jx44HouZTvrLPOolGjRsyePZsnnngif/vmzZvzP/948803b/O44447jmbNmm1zFrZv375UqlSJd999l3//+9/529esWcPtt9++w+NJkiSpdCgRxezuu+/mueeeo2/fvtx11127nL91yfHMzMxt9mVkZBSYs3W8vbk7mv+/+vfvT2pqav7X0qVLd5lR2/fCCy/QuHFjDjnkEM4991wuuOACDj/8cG688UaSkpIYMGBA0BEBiIuLY8SIESQlJXHzzTdzxBFHcP7553PggQfy9ddfc+aZZ3LppZdu87gFCxYwb968bYp+1apVefXVV4mJieHcc8/lmGOOoUePHjRt2pTffvuN66+/nuOOO25fvTxJkqSSa+kM+PEtyCtZ9wSO+mJ233338dBDD9G7d29efPHFQt3AuG7dukDByxW32t5ljnXr1t3u3K3zq1SpstNilpCQQKVKlQp8afc88MADXHbZZYRCIT799FPee+890tPTufLKK/nhhx/o2LFj0BHzHXnkkcyYMYNzzjmH3377jXfffZcqVarw6KOP8tZbbxV5mf9zzjmHKVOmcOKJJ/L999/z4Ycf0qRJE1599VWeeuqpvfQqJEmSSpFwGCbeC+MuhymPBp2mSKJ68Y+BAwcycOBAevXqxWuvvVboH3TbtWsHwNSpU7niiisK7Js6dWqBOVvHI0aMYMmSJQUWAMnIyOD777/n6KOP3tOXokI67bTTOO2004KOUWiHHHLIdj8XtiOLFy/e6f6jjjoq/7JNSZIkFdHCyfD7VIhNgNYXB52mSKL2jNn999/Pfffdx0UXXcTQoUN3WMpWrlzJ3LlzC1wa1qRJE9q3b8/YsWMLXFaYlpbGkCFDaNKkSf6KjBC5uTTAY489VuDYzz//PBkZGft8qXxJkiRJRRQOw+RBkXHbS6FSnWDzFFFUnjF79tlnGTBgAPvvvz/HH388o0aNKrC/Vq1aHH/88UDk813Dhg1j0qRJdO3aNX/O4MGD6dq1K0cffTTXX3898fHxvPjii6xcuZIPP/ywwCWRJ598MmeeeSZPP/00qampdO7cmdmzZ/Pcc8/RtWvXXa4CKUmSJClgCz6Fpd9AuUTodFPQaYosKovZjBkzAPj999/p06fPNvu7dOmSX8x2pEOHDkyZMoW///3v3HfffeTm5tK2bVs++eSTAgVuq9GjRzNo0CCGDx/O6NGjqVWrFjfffDMDBgwo8meFJEmSJO1D4TBM+kdk3K4vVKwdbJ7dEAqHw+GgQ5Q2aWlppKSkkJqautOFQLZs2cKiRYto1KiR96dSYPw+lCRJJd6vE+CN8yAuGW6YDRVqBp0oX2G7gaeCJEmSJJVc4TBMeigybn9FVJWyorCYSZIkSSq55n0IK2dDfAU48oag0+w2i5kkSZKkkikvDyb9dyXG9ldC+WrB5tkDFjNJkiRJJdPc92H1jxBfEY68Lug0e8RiJkmSJKnkycv7//uWHfE3SK4abJ49ZDGTJEmSVPL88g6s+QUSUqDj1UGn2WMWM0mSJEklS14uTH44Mu54DSRVCTZPMbCYSZIkSSpZfvo3rJsHiSlwRL+g0xQLi5kkSZKkkiM3Bz7/79myI6+LlLNSwGIm7YE5c+bQo0cPatSoQVJSEoceeihPPPEEeXl5RTrODz/8wLXXXssRRxxBnTp1SEhIICUlhY4dO/LMM8+Qk5Ozl16BJElSCfPTW/DHb5HLFzuUjrNlAOWCDiCVVNOmTeO4444jPT2d9u3b07BhQ6ZMmcLNN9/MV199xdixYwmFQoU61pQpU3j22Wdp0KABzZs3p0aNGqxdu5avvvqKadOm8fbbb/PRRx8RFxe3l1+VJElSFMvN+f/Plh11AyRUDDZPMbKYSbshJyeHXr16kZ6ezuOPP85NN90EwKZNmzjhhBMYN24cQ4cO5dJLLy3U8bp370737t1p3Lhxge2rV6+mW7dufPbZZwwZMoR+/UrPvwpJkiQV2Q+jYf0iSK4O7a4IOk2x8lJGaTe8/fbbLFiwgJYtW+aXMoAKFSrw7LPPAvD4448X+niNGzfeppQB1KpVizvvvBOAzz77bA9TS5IklWC52fD5PyPjo26AhArB5ilmFjNFnTlz5nDxxRfTpEkTEhMTqVGjBq1ateLGG29k5cqVQccD4P333wfg3HPP3Wbf4YcfTuPGjfnpp59YvHjxHj9XbGwsAPHx8Xt8LEmSpBLr+5Gw4XcoXxPa9Q06TbGzmCmqzJo1izZt2jBy5Ehq1KjBWWedRYcOHcjKyuKpp55i3rx5QUcEYPbs2QC0bt16u/u3bt86b3etX7+exx57DICTTz55j44lSZJUYuVkwZRHI+NON0F8crB59gI/Y6aoMnjwYDIyMhg3bhxnn312gX1z5syhcuXKhTrO5MmTOeaYY4r03F26dGHy5MmFmvv7778DUK9eve3u37p967zCmj9/Pg899BB5eXmsXr2aqVOnsmnTJq666ip69uxZpGNJkiSVGt8Nh9SlUKE2tC3cZ/hLGotZtAqHITs96BRFE5cMhVyFcEfWrFkDwLHHHrvNvoMPPrjQx6lduzaXXHJJkZ67WbNmhZ67adMmAJKTt/+vNeXLly8wr7BWr17NsGHDCmy79tpreeihhwq9wqMkSVKpkp3x/2fLjr4F4pKCzbOXWMyiVXY6/KNO0CmK5q4VEF9+jw7Rpk0bxo8fT+/evbn77rtp27YtMTFFv+K2WbNmDB06dI+yFMaOylI4HN6t43Xq1IlwOExubi6///47b7/9NgMHDmTChAl8/PHHNGzYcA/SSpIklUAzX4WNKyGlPrQp2j+8lyR+xkxR5bbbbqNr16689957dOjQgapVq3LiiSfy9NNPs3HjxqDj5atQIbIK0ObNm7e7Pz09vcC8ooqNjaVRo0bcfPPNDB06lPnz53PdddftXlhJkqSSKnMTfPHfla673A7lEoLNsxd5xixaxSVHzkCVJHF7/iHMSpUq8dlnn/HVV1/x3nvvMXnyZD799FM+/vhjBg0axBdffEGTJk12eZy5c+fy8MMPF+m5mzVrlr80/a7sv//+rF+/nmXLlnHYYYdts3/ZsmX58/bUmWeeSYUKFRg/fjxZWVmuzihJksqO6S9C+jqo2hhaXhh0mr3KYhatQqE9viywpAqFQnTq1IlOnToBsHbtWm644QZGjRrFXXfdxZtvvrnLY6xatWqbz2rtSpcuXQpdzFq2bMns2bOZNWsW3bt332b/rFmzALZb2ooqFApRtWpVfv/9d9avX0+tWrX2+JiSJElRL2MDfPVUZNy1P8TGBRpnb/NSRkW9GjVqcN999wHw448/FuoxXbt2JRwOF+mrsCsyApxyyikAvPXWW9vs++6771i4cCHNmzenUaNGhT7mjixcuJClS5dSqVIlqlevvsfHkyRJKhGmPQdbUqFGM2hxTtBp9jqLmaLKCy+8wKJFi7bZPn78eKB4Lg0sDmeddRaNGjVi9uzZPPHEE/nbN2/ezDXXXAPAzTffvM3jjjvuOJo1a8b06dMLbH/kkUdYuHDhNvPnzZtHz549CYfD9O7dO/9m05IkSaXa5j/g6+ci42PugpjS/zNQKLy7y8dph9LS0khJSSE1NZVKlSrtcN6WLVtYtGgRjRo1IjExcR8mjF6tWrVi9uzZNG/enIMPPphy5coxb948vv/+e5KSkvj000/p2LFj0DEBmDp1Kt26dSMjI4MOHTrQoEEDvvjiC1auXMmZZ57JuHHjtllRsmHDhixZsoRJkybRtWvXAtuXLl1Ky5YtOeCAAwiHwyxZsoRvv/2WvLw8OnfuzAcffLDbi4nsjN+HkiQp6ky8N3IZY+3D4MrPYTdW6Y4Whe0GJfcVqlR64IEHuOyyywiFQnz66ae89957pKenc+WVV/LDDz9ETSkDOPLII5kxYwbnnHMOv/32G++++y5VqlTh0Ucf5a233irSMv8PPfQQF1xwAZs3b2bChAm8++67/P777xx//PEMHTqUSZMm7ZVSJkmSFHU2roZvXoqMj727RJeyovCM2V7gGTOVJH4fSpKkqPLh7ZHVGOu1g8snRhbFK8E8YyZJkiSpZNmwFL59LTI+9u4SX8qKwmImSZIkKTpM+RfkZkHDo6FRl6DT7FMWM0mSJEnB+2MBfDciMi5jZ8vAYiZJkiQpGnz+CIRz4YDjYf8jgk6zz1nMJEmSJAVrzVz44c3I+Ni/B5slIBYzSZIkScGaPAgIQ7NToc7hQacJhMVMkiRJUnBW/gC/vAOE4Ji7gk4TGIuZJEmSpOBM+kfkvy3OgVqHBJslQBYzSZIkScFYNhN+HQ+hGOjaP+g0gbKYSZIkSQrGZw9G/tuyJ1Q/INgsAbOYSZIkSdr3Fn8JCydBTBx0uT3oNIGzmEmSJEnat8Jh+OyhyLh1b6jSINg8UcBiJkmSJGnfWvAZ/D4VYhOg861Bp4kKFjNJkiRJ+044/P+fLWvXFyrVCTZPlLCYKSpNnDiRM888k9q1axMfH0+1atVo3rw5F110ES+//DJZWVkF5jds2JBQKERcXBy//fbbdo85dOhQQqEQ/fr12+72v37Fx8dTp04dzj77bKZMmbLXXueeeP/997nrrrvo1q0bKSkphEIhTjrppKBjSZIk7dy88bBiFsQlQ6ebgk4TNcoFHUD6XwMGDOD+++8HoEWLFhx11FHExsYyb948Ro0axRtvvMFpp51G7dq1t3lsTk4ODzzwAMOGDSvy8zZp0oROnToBsHnzZr7//nvefvtt3nnnHV555RUuu+yyPXthxaxXr16kpqYGHUOSJKnw8vL+/2xZh35QoUaweaKIxUxRZebMmdx///3Ex8fz9ttv07179wL7ly9fzssvv0xCQsJ2H5+UlMTIkSO5++67OfDAA4v03J06dWLo0KH5v87Ly+P222/nscce4+abb+b888+nfPnyRX5Ne8s555zDwQcfTLt27di4cSOnnXZa0JEkSZJ27qdxsOZnSEiBI68LOk1U8VJGRZW3334bgPPOO2+bUgZQt25d7rvvPqpUqbLdx//tb38jNzc3/4zbnoiJieGhhx4iJSWF1NRUpk2btsfHLE5Dhgzh1ltvpUuXLlSoUCHoOJIkSTuXmw2T/rsS41HXQ3LVYPNEGYuZosratWsBqFFj905rX3PNNdSsWZNRo0Yxb968Pc6TkJDAAQdEbna4Zs2aPT6eJElSmTVrOKxfBOVrRC5jVAEWM0WVevXqATBu3Lj8klYUycnJ3H777cV21gxg48aNANSsWbNYjidJklTmZGfA549Exp1vgwSv9vlfFrMot3nz5h1+bdmypdBzMzIydntuenr6Duemp6cX6+u96KKLSExM5Pfff+eAAw7gkksu4ZVXXuHnn38mHA4X6hh/+9vfqFWrFqNHj2bOnDl7lGf+/PksWLCAypUrc8QRRxT6cYsXL95mpcddfTVs2HCPskqSJEWt6S/BplWQsj+06RN0mqjk4h9RbmefHerevTsffPBB/q9r1qy5w6LUpUsXJk+enP/rhg0bsm7duu3Obdu2LTNmzMj/dfPmzVmyZMl25zZv3pyff/55Zy+hSJo0acK7777LpZdeyooVKxg+fDjDhw8HIq/vkksu4a677qJy5co7PEZycjJ33HEHN998M/fffz+jRo0qco7Nmzczc+ZMrrsu8qHU559/vkgLf1SoUIFLLrmkSM9ZvXr1Is2XJEkqEbakwpdPRMZd74Ry21/ErayzmCnqnHDCCSxcuJD//Oc/TJw4kW+++YaffvqJNWvW8K9//Yu3336bqVOn7vRzaP369eORRx5hzJgx3HPPPTRv3nyXzzts2LBtltlPSEhg/PjxHH/88UV6DdWrVy+wwqMkSVKZNfUZyFgP1ZtCywuCThO1LGZRbtOmTTvcFxsbW+DXO1ucIiam4FWrixcvLvTcX375ZYeXEYZCoR0eZ08kJCTQo0cPevToAUQWBRk6dCj33Xcfv/32G3fddRcvv/zyDh+flJTEnXfeyY033sjAgQN58803d/mcf72P2R9//MGUKVNIS0ujT58+fPPNN/mff5MkSVIhbVoLXz8bGR97N8TE7nx+GWYxi3JFuXxub81NTk4u9Ny9pUaNGtx2220kJSVx3XXXFbiEc0euuuoqHnnkEcaOHcs999yzy/n/ex+zDRs2cPLJJzNt2jSuuuqqQj3nVuvWrePWW28t9HyInGV79NFHi/QYSZKkqPbl45C9GeocDgd7z9WdsZipROnatSvADj8f91eJiYnceeedXH/99QwcOJBTTjmlSM9VuXJl3njjDQ4++GA+/PBDpkyZQufOnQv12E2bNm1zWeSuNGjQwGImSZJKjw1LYcYrkfFx98JeutKqtHBVRkWVXa28uGDBAgDq1KlTqONdeeWV1K1bl3HjxvHDDz8UOU+jRo3o1y9yn40HH3yw0I9r2LAh4XC4SF87u7xUkiSpxPn8YcjNgoZHQ+Njgk4T9Sxmiir33HMPt99+O4sWLdpm3/z587nlllsAOPvsswt1vISEBPr37084HOaFF17YrUx33nknSUlJTJw4scBqlZIkSdqBdfPh+zci4+MGeLasECxmiiqbNm3iX//6F02aNOHggw/m7LPP5vzzz6djx440a9aMBQsW0KZNGwYMGFDoY/bt25d69eptc3+2wqpdu3b+WbN//OMfu3WMveGBBx7giCOO4IgjjuDqq68GYNq0afnbjjjiCFauXBlwSkmSVCZ99iCE86Bpd6jfLug0JYKfMVNUufvuu2nTpg0TJkxg9uzZfP7556SlpVG5cmW6dOnCueeeS9++fYmPjy/0MRMSErjrrrvyy8vuuOOOO3jxxRd59913+emnn2jRosVuH6u4LFiwgG+++abAttTU1ALbMjMz93UsSZJU1q34Hn55BwhFVmJUoYTCu/pQj4osLS2NlJQUUlNTqVSp0g7nbdmyhUWLFtGoUSMSExP3YULp//l9KEmSitWIc+C3T+DQ8+CcHd/eqKwobDfwUkZJkiRJxWPxV5FSFlMOjukfdJoSxWImSZIkac+Fw/Dp/ZFx695QtXGweUoYi5kkSZKkPTf/Y1g6DcolQefbg05T4ljMJEmSJO2ZvDz49IHIuMOVUGm/YPOUQBYzSZIkSXvm53/D6h8hoRIcdWPQaUoki5kkSZKk3ZebDZMeioyPvB6Sqwabp4SymEUB71igIPn9J0mS9sj3I+HPhZBcHY7oF3SaEstiFqCYmMhvf25ubsBJVJZt/f7b+v0oSZJUaNkZMPmfkXHnWyGhYrB5SjB/EgtQXFwcsbGxZGRkBB1FZVhGRgaxsbHExcUFHUWSJJU001+GjSugUj1oe1nQaUo0i1mAQqEQycnJpKametZMgcjNzSU1NZXk5GRCoVDQcSRJUkmSsQG+eCwyPqY/lEsINE5JVy7oAGVdzZo1Wbx4MUuWLKFq1aokJCT4A7L2unA4TGZmJn/++Sd5eXnUrFkz6EiSJKmk+eop2LIBajSDlhcGnabEs5gFLD4+nnr16rFu3TpWrlwZdByVMeXLl6d27drEx8cHHUWSJJUkaSth2vOR8XH3QkxssHlKAYtZFEhOTmb//fcnJyeHnJycoOOojChXrhzlyvkWIEmSdsPn/4ScDKjfAZp2DzpNqeBPZVHEH5QlSZIU9dbNh1nDI+NuA8GP4RQLF/+QJEmSVHifPQDhXDjoJGjQMeg0pYbFTJIkSVLhLP8WfnkXCEU+W6ZiYzGTJEmStGvhMEwcEBm3vBBqHRJsnlImaovZoEGD6NGjB40bNyYUCtGwYcMiPX7y5MmEQqGdfn311VeFmt+qVavifXGSJElSSbPgU1j8BcTGR+5bpmIVtStN3HXXXVStWpXWrVuzYcOGIj/+4IMP5vXXX99me2ZmJldeeSXVq1enffv22+y/8sorOfroowtsq1q1apGfX5IkSSo18vLgk/si43ZXQOX9A41TGkVtMVuwYAGNGzcGoEWLFmzatKlIj69Vqxa9evXaZvuoUaPIy8ujd+/exMXFbbO/Y8eO232cJEmSVGb9/G9Y9SMkVIKjbwk6TakUtZcybi1lxe2VV14BoG/fvjuck56ezpYtW/bK80uSJEklSk5WZCVGgCOvh/LVgs1TSkVtMdsbFi1axKRJk+jUqRNNmzbd7pwbbriB8uXLk5SURKNGjXjggQfIzs7ex0klSZKkKPHtUFi/GMrXhI5XB52m1IraSxn3hldffZVwOLzds2VxcXGceuqpdO/enXr16rFq1SpGjx7Nvffey1dffcUHH3xAbGzsdo+bmZlJZmZm/q/T0tL22muQJEmS9pnMTTDlkci46x0QXz7YPKVYKBwOh4MOsStbP2O2ePHi3T5Gbm4uDRs2JC0tjZUrV5KcnFyox/Xt25chQ4YwcuRIevbsud059913HwMHDtxme2pqKpUqVdrtzJIkSVKgJv8TJv8DqjaGa6ZD7LZrNGjn0tLSSElJ2WU3KDOXMk6YMIFly5Zx4YUXFrqUAdxzzz0AfPDBBzuc079/f1JTU/O/li5dusd5JUmSpEBtXgdTB0fGx95tKdvLysyljEOGDAF2vujH9tSvX5/Y2FjWrl27wzkJCQkkJCTsUT5JkiQpqkx5FLI2wX6toPlZQacp9crEGbM1a9bw3nvvcdhhh9G2bdsiPXbhwoXk5uZSu3btvZROkiRJijLrF8OMyGrmdLsPYspEbQhUqfgdXrlyJXPnziU9PX27+4cPH052dvZOz5atWrVqm225ubn07x+5q/npp59ePGElSZKkaDfpH5CXDY27QpNjgk5TJkTtpYyvv/46S5YsAWDt2rVkZWXx4IMPAlC5cmWuvfba/Ln9+/dn2LBhTJo0ia5du25zrFdffZXExMSd3ji6e/fuVKtWjU6dOlG3bl1Wr17N2LFjmT17NmeffTbnnHNO8b5ASZIkKRqt+gl+GBMZd7sv0ChlSdQWsyFDhvD5558X2LZ1IY4GDRoUKGY7M3XqVObMmUPPnj2pUqXKDuedf/75/Oc//+HZZ59l/fr1JCcn06JFC1588UX69u1LKBTa/RcjSZIklRSfDgTCcMhZUOfwoNOUGSViufySprBLYkqSJElRZfGXMPQUiCkXWR6/WpOgE5V4LpcvSZIkqfDCYfjkvsi49SWWsn3MYiZJkiQJ5rwHy2ZAXDJ0uSPoNGWOxUySJEkq63Kz//9sWcdroWKtQOOURRYzSZIkqaz7dij8uQCSq8NR1wedpkyymEmSJEllWeZGmPxwZNz1TkioGGyeMspiJkmSJJVlXw2G9HVQtQm06RN0mjLLYiZJkiSVVWkr4etnIuNu90FsXKBxyjKLmSRJklRWTR4E2elQrz0cfFrQaco0i5kkSZJUFq2dB9+9Hhmf8ACEQsHmKeMsZpIkSVJZ9Ml9EM6DZqfC/kcEnabMs5hJkiRJZc3ir2DehxCKheMGBJ1GWMwkSZKksiUchon3RMZtLoEaBwWbR4DFTJIkSSpbfnkHln8LceWhy51Bp9F/WcwkSZKksiInCz4ZGBkfdT1UrBVsHuWzmEmSJEllxbevwfpFUL4mdLw26DT6C4uZJEmSVBZsSYPP/xkZd70TEioEm0cFWMwkSZKksuCrpyD9D6h2ILTuHXQa/Q+LmSRJklTapa2Ar5+NjLvdB7FxgcbRtixmkiRJUmk36R+QkwH1j4BmpwSdRtthMZMkSZJKs9W/wPcjI+MTHoBQKNg82i6LmSRJklSafXIfhPPg4NOhfvug02gHLGaSJElSabXoC5g/AWLKwXEDgk6jnbCYSZIkSaVRXh5MvCcybtMHqh8QaBztnMVMkiRJKo1+eRtWfAfxFaDLHUGn0S5YzCRJkqTSJicTPhkYGR91A1SoGWwe7ZLFTJIkSSptpr8EG5ZAhdrQ8Zqg06gQLGaSJElSaZL+J0z5V2R87N0QXz7YPCoUi5kkSZJUmnz+T9iSCrVaQKueQadRIVnMJEmSpNLijwUw45XI+IQHISY22DwqNIuZJEmSVFpMvBfycuDAE6DJMUGnURFYzCRJkqTSYPFXMPd9CMXA8fcHnUZFZDGTJEmSSrq8PPj47si49SVQ8+Bg86jILGaSJElSSffTOFgxK3Iz6WPuCjqNdoPFTJIkSSrJsjPg0//eTLrTjd5MuoSymEmSJEkl2TcvQOpSqFQXjvBm0iWVxUySJEkqqTavgy8ej4yPuxfik4PNo91mMZMkSZJKqsmDIDMN9msJh54XdBrtAYuZJEmSVBKtnQczX4uMT3gIYvzRviTzT0+SJEkqiSYOgHAuNO0OjY4OOo32kMVMkiRJKmkWTYFfx0MoFroNDDqNioHFTJIkSSpJ8vJgwt8j47aXQY2Dgs2jYmExkyRJkkqSH96EVT9AQiXoemfQaVRMLGaSJElSSZGVDp/eHxkffTOUrx5sHhUbi5kkSZJUUnz9LGxcASn7Q4e/BZ1GxchiJkmSJJUEG1fDl09Ext0GQFxisHlUrCxmkiRJUkkw+R+QvRnqtIZDzg46jYqZxUySJEmKdmvmwKzhkfGJ//Bm0qWQf6KSJElSNAuHYcJdEM6DZqdCg45BJ9JeYDGTJEmSotn8ibDgM4iJg+PvDzqN9hKLmSRJkhStcrPh4//eTPqIflCtSbB5tNdYzCRJkqRoNfNVWPcrJFeHzrcFnUZ7kcVMkiRJikbpf8Kkf0TGx9wFiSnB5tFeZTGTJEmSotHnj8CWDVCzObS+JOg02sssZpIkSVK0WTcfZrwcGZ/4EMSWCzaP9jqLmSRJkhRtPr4b8nLgoJOgybFBp9E+YDGTJEmSoslvn8KvH0FMOTjhwaDTaB+xmEmSJEnRIjcHJvx3efx2V0D1A4PNo33GYiZJkiRFi1nDYO0cSKoCXW4POo32IYuZJEmSFA0yNsCkhyLjrv0huWqgcbRvWcwkSZKkaPDFo5D+B1Q/CNpeFnQa7WMWM0mSJClofyyAaS9Exif+A2Ljgs2jfc5iJkmSJAVt4r2Qlw1NjoMDjw86jQJgMZMkSZKCtGgKzH0fQrGRm0mrTLKYSZIkSUHJy4WP7oqM214KNQ8ONo8CYzGTJEmSgvLdCFj9IySkQNe7gk6jAFnMJEmSpCBsSYPPHoyMu94B5asFm0eBsphJkiRJQfjycdi8Bqo2gXZXBJ1GAbOYSZIkSfva+sXw9XOR8QkPQrn4QOMoeBYzSZIkaV+bOAByM6FRZ2h6ctBpFAUsZpIkSdK+tGQq/PIOhGLgxEEQCgWdSFHAYiZJkiTtK3m5MP72yLh1b6jdItg8ihoWM0mSJGlfmTUcVv13efxj7wk6jaKIxUySJEnaFzI2wGcPRMZd74Ty1QONo+hiMZMkSZL2hc//Cel/QPWm0N7l8VVQ1BazQYMG0aNHDxo3bkwoFKJhw4ZFPkbXrl0JhULb/XrnnXe2mZ+VlcX9999PkyZNSEhIoEGDBtxxxx2kp6fv+QuSJElS2bV2Hkx/KTI+6R8QGxdsHkWdckEH2JG77rqLqlWr0rp1azZs2LDbx6levTpPPPHENtvbtm27zbaePXsybtw4Lr74Yjp37szs2bN57LHHmDlzJhMnTiQmJmp7rCRJkqJVOAwf3Ql5OXDQyXBAt6ATKQpFbTFbsGABjRs3BqBFixZs2rRpt45Tvnx5evXqtct5EyZMYNy4cVx33XUMHjw4f3vDhg259dZbeeONNwp1HEmSJKmAXz+CBZ9BbDyc+FDQaRSlovYU0NZSVhzy8vJIS0sjLy9vh3NGjhwJwC233FJg+9VXX01SUhIjRowotjySJEkqI3IyYcJdkfERV0O1JsHmUdSK2mJWXJYvX06FChVISUmhfPnydO/enZkzZ24zb/r06dSpU4cGDRoU2J6UlESrVq2YPn36voosSZKk0mLa8/DnQqhQCzrfGnQaRbGovZSxODRs2JAjjzySQw89lISEBL777jsGDx7MUUcdxfjx4zn22GPz5y5fvpzmzZtv9zj16tXj66+/Jj09neTk5G32Z2ZmkpmZmf/rtLS04n8xkiRJKlk2roIp/4qMu90HCRUDjaPoVqqL2dChQwv8+uyzz6ZXr160bt2afv368euvv+bvS09PJyEhYbvHSUxMzJ+zvWI2aNAgBg4cWHzBJUmSVPJ9ej9kbYK6beCwC4JOoyhX6i9l/F9NmzblvPPOY/78+cyfPz9/e3JycoGzXn+VkZGRP2d7+vfvT2pqav7X0qVLiz+4JEmSSo5l38L3kTUMOPkRcHVv7UKpPmO2I1vvibZ27VoOPPBAAOrWrcuyZcu2O3/58uVUqVJlh8UsISFhh2fbJEmSVMbk5cH42yPjlhdCvW1v0yT9rzJZ3beeKatdu3b+tnbt2rFixQqWLFlSYG5GRgbff/897dq126cZJUmSVEL9OAaWz4S48nDcgKDTqIQoFcVs5cqVzJ07l/T09Pxt69evJysra5u5M2fOZMyYMRxyyCEFluTv2bMnAI899liB+c8//zwZGRnew0ySJEm7lrkJJv63jHW+FSrtF2welRhReynj66+/nn/2au3atWRlZfHggw8CULlyZa699tr8uf3792fYsGFMmjSJrl27AvD5559z1VVX0aNHDw444AASEhL4/vvvGTp0KHFxcbz88ssFnu/kk0/mzDPP5OmnnyY1NZXOnTsze/ZsnnvuObp27cpFF120b164JEmSSq4vHoNNq6BKI+h4TdBpVIJEbTEbMmQIn3/+eYFt99xzDwANGjQoUMy2p2nTpnTp0oWPPvqI1atXk5mZSZ06dejVqxd33nln/mfL/mr06NEMGjSI4cOHM3r0aGrVqsXNN9/MgAEDiPEDm5IkSdqZPxfC189Exic+BOVcg0CFFwqHw+GgQ5Q2aWlppKSkkJqaSqVKlYKOI0mSpH1h9EUw931ofAxc/DaEQkEnUhQobDfwNJAkSZK0pxZMipSyUCyc9LClTEVmMZMkSZL2RG4OfHRnZNz+CqjZLNg8KpEsZpIkSdKemDkE1s6FpKrQ9c6g06iEsphJkiRJu2vzOpj0UGR87N2QVCXYPCqxLGaSJEnS7vp0IGxJhdqHQps+QadRCWYxkyRJknbH8m9h1uuRcfdHISY22Dwq0SxmkiRJUlHl5cGHtwFhOOwC2P+IoBOphLOYSZIkSUX1/cjIGbP4inD8wKDTqBSwmEmSJElFkbEBPrkvMu56B1SsHWQalRIWM0mSJKkoJg+C9HVQvSl06Bd0GpUSFjNJkiSpsFb9BNNfioxP/ifExgWbR6WGxUySJEkqjHAYxt8O4TxofgY0OSboRCpFLGaSJElSYfw0DpZ8BeWS4ISHgk6jUsZiJkmSJO1K5ib4+O7I+OhboHL9YPOo1LGYSZIkSbsy5V+wcSVUaQhHXhd0GpVCFjNJkiRpZ9bNh6+fjYxP+ifEJQabR6WSxUySJEnaka0LfuRlw4EnQNOTgk6kUspiJkmSJO3I3A9gwWcQGw8nPRx0GpViFjNJkiRpe7IzYEL/yPjI66Bak2DzqFSzmEmSJEnb89VTsOF3qFQ3shKjtBdZzCRJkqT/tX4xfPlEZHzCgxBfPtA4Kv0sZpIkSdL/mvB3yNkCDY+GQ84KOo3KAIuZJEmS9Fe/fQJz34dQLHT/F4RCQSdSGWAxkyRJkrbKyYLxd0TGHfpBzYODzaMyw2ImSZIkbTXtWfjjNyhfE7reEXQalSEWM0mSJAlgw1L4/JHI+PiBkJgSbB6VKRYzSZIkCSL3LMtOh/07QssLg06jMsZiJkmSJM3/BOa8F1nw45THXPBD+5zFTJIkSWVb9hb48NbIuEM/qHVIsHlUJlnMJEmSVLZ99RSsXwQVakPXO4NOozLKYiZJkqSy689F8OXjkfGJD0FipWDzqMyymEmSJKns+uhOyNkCjTpDi3OCTqMyzGImSZKksmnuh/DrRxATB91d8EPBsphJkiSp7MlKh/H/vYH0kddCjYOCzaMyz2ImSZKksueLxyD1d0ipD51vCzqNZDGTJElSGbPuN5g6ODI+aRDElw82j4TFTJIkSWVJOBy5Z1luFhxwPDQ7NehEEmAxkyRJUlnyyzuwcBLEJkD3R1zwQ1HDYiZJkqSyIXMjfHRXZNzpJqjaONg80l9YzCRJklQ2fP5P2LgCqjSETjcGnUYqwGImSZKk0m/NHJj2fGR88r8gLinYPNL/sJhJkiSpdAuH4YNbIC8nstjHQScEnUjahsVMkiRJpdsPY2DJV1AuKbI8vhSFLGaSJEkqvTI2wMd3R8ZdboPK+wcaR9oRi5kkSZJKr0kPweY1UO1A6Hhd0GmkHbKYSZIkqXRaPgumvxwZn/IolIsPNo+0ExYzSZIklT55ufD+jUAYDj0PGncNOJC0cxYzSZIklT4zXoGVsyEhBU58KOg00i5ZzCRJklS6pK2ETx+IjLsNgAo1g80jFYLFTJIkSaXLR3dC1kao1w7aXBp0GqlQLGaSJEkqPeZPhF/egVAsnPoExPjjrkoGv1MlSZJUOmRnwAe3RMZH/A1qHxpsHqkILGaSJEkqHaY8ChuWQKW60PXOoNNIRWIxkyRJUsm3dh589VRkfPI/IaFisHmkIrKYSZIkqWQLh+H9myAvGw46GZqdGnQiqcgsZpIkSSrZZo+CJV9BXDJ0fwRCoaATSUVmMZMkSVLJlf4nfHx3ZNzlDqi8f7B5pN1kMZMkSVLJ9ckASP8DahwMHa8JOo202yxmkiRJKpmWfA2zhkfGpz4BsXHB5pH2gMVMkiRJJU9udmTBD4DDL4YGHYPNI+0hi5kkSZJKnq+fhbVzILkaHH9/0GmkPWYxkyRJUsmyfglMfjgyPuFBSK4abB6pGFjMJEmSVHKEwzD+dsjJgAadoOWFQSeSioXFTJIkSSXH3Pfh148gJg5Ofdx7lqnUsJhJkiSpZNiSBh/eFhkfdT3UaBpsHqkYWcwkSZJUMnx6P2xcCVUbQ+fbgk4jFSuLmSRJkqLf0hkw45XI+NQnIC4p2DxSMbOYSZIkKbrlZsN71wPhyGIfjbsGnUgqdhYzSZIkRbepT8OaXyCpKpzwUNBppL3CYiZJkqTo9ccC+PyfkfFJg6B8tWDzSHuJxUySJEnRKRyG92+CnC3QqAscdn7QiaS9xmImSZKk6PTDm7DocyiXGFnww3uWqRSzmEmSJCn6bP4DPuofGXe5Hao1CTaPtJdZzCRJkhR9Pr4bMv6Ems3hyOuDTiPtdVFbzAYNGkSPHj1o3LgxoVCIhg0bFunx69ev56mnnuKEE06gfv36JCUl0bRpU6688kqWLl26zfzJkycTCoW2+9WqVavieVGSJEnatYWTYfYbQAhOGwyxcUEnkva6ckEH2JG77rqLqlWr0rp1azZs2FDkx3/zzTfcfPPNHHvssVxzzTVUr16dn3/+mRdffJExY8YwdepUmjdvvs3jrrzySo4++ugC26pWrbq7L0OSJElFkZ0B790YGbfrC/XbBRpH2leitpgtWLCAxo0bA9CiRQs2bdpUpMc3a9aMefPmccABBxTYfsopp3D88cczYMAAxo4du83jOnbsSK9evXY/uCRJknbflH/B+kVQsQ4cd2/QaaR9JmqL2dZStrt2dOljt27dqFq1Kj/++OMOH5uenk5MTAyJiYl7lEGSJElFsPpn+OqpyLj7I5BYKdg80j4UtZ8x21tSU1PZuHEjNWvW3O7+G264gfLly5OUlESjRo144IEHyM7O3ukxMzMzSUtLK/AlSZKkIsjLg/dugLwcaHYqHHxa0ImkfSpqz5jtLQ8++CDZ2dlccsklBbbHxcVx6qmn0r17d+rVq8eqVasYPXo09957L1999RUffPABsbGx2z3moEGDGDhw4L6IL0mSVDrNHALLZkB8RTj5kaDTSPtcKBwOh4MOsStbP2O2ePHiPTrOmDFjuOCCC+jWrRsfffQRMTG7PmHYt29fhgwZwsiRI+nZs+d252RmZpKZmZn/67S0NOrXr09qaiqVKnkKXpIkaafSVsAz7SFrI5z8L+hwZdCJpGKTlpZGSkrKLrtBmbmU8cMPP+Tiiy/m8MMPZ+zYsYUqZQD33HMPAB988MEO5yQkJFCpUqUCX5IkSSqk8bdHSlndttDu8qDTSIEoE8Xso48+4uyzz6ZZs2Z8/PHHpKSkFPqx9evXJzY2lrVr1+7FhJIkSWXU3A9gznsQUw5Oewpitv/REam0K/XFbMKECZx11lkcdNBBfPrpp1SrVq1Ij1+4cCG5ubnUrl17LyWUJEkqo7akwge3RMYdr4XaLYLNIwWoVBSzlStXMnfuXNLT0wts//jjjznzzDM58MAD+eyzz6hevfoOj7Fq1apttuXm5tK/f38ATj/99OINLUmSVNZNvBc2roSqTaDrnUGnkQIVtasyvv766yxZsgSAtWvXkpWVxYMPPghA5cqVufbaa/Pn9u/fn2HDhjFp0iS6du0KwMyZMznjjDMIh8NcdtllfPTRR9s8x19vJN29e3eqVatGp06dqFu3LqtXr2bs2LHMnj2bs88+m3POOWcvvlpJkqQyZvGX8O3QyPj0wRCXFGgcKWhRW8yGDBnC559/XmDb1oU4GjRoUKCYbc9PP/3Eli1bALjpppu2O+evxez888/nP//5D88++yzr168nOTmZFi1a8OKLL9K3b19CodCevBxJkiRtlZ0B/7kuMm7TBxp2CjSOFA1KxHL5JU1hl8SUJEkqkyYOgK+ehIr7wTXfQGLhF2aTShqXy5ckSVL0WfE9TH06Mj7lMUuZ9F8WM0mSJO0budnwn2shnAuHnAXNTgk6kRQ1LGaSJEnaN6Y+Dat+hMTKcPIjQaeRoorFTJIkSXvfut9g8sOR8UmDoELNYPNIUcZiJkmSpL0rLw/eux5yM6HJsdDywqATSVHHYiZJkqS9a9ZQWPIVxCXDqU+CtyGStmExkyRJ0t6TtiKyPD7AsfdAlQbB5pGilMVMkiRJe0c4DB/cAplpULctdLgq6ERS1LKYSZIkae/4+W2Y9yHExMHpT0NMbNCJpKhlMZMkSVLxS/8Txt8eGR99C9RqHmweKcpZzCRJklT8JvwdNq+FGs3g6JuDTiNFPYuZJEmSitdvn8LsN4BQ5BLGcglBJ5KinsVMkiRJxSdzE7x3Y2Tc4Sqo3z7QOFJJYTGTJElS8fnsAUj9HVL2jyyPL6lQLGaSJEkqHku+hm9ejIxPewISKgSbRypBLGaSJEnac9kZ8J9rgTAc3gsO6BZ0IqlEsZhJkiRpz016CP74DSruByc8FHQaqcSxmEmSJGnPLJsJXz8bGZ/6JCRVDjKNVCJZzCRJkrT7cjLhnashnAeHnQ9NTwo6kVQiWcwkSZK0+z7/J6ybB+VrwkkPB51GKrEsZpIkSdo9K76DL5+MjE99HJKrBhpHKsksZpIkSSq6nCx45xoI58IhZ8HBpwWdSCrRLGaSJEkqui8fhzU/Q3I16P5o0GmkEs9iJkmSpKJZ9RNM+Vdk3P1fUL56sHmkUsBiJkmSpMLLzYZ3r4a8HGh2KhxydtCJpFLBYiZJkqTC++opWDkbEivDKY9DKBR0IqlUsJhJkiSpcNbMjSyPD3DyP6FirWDzSKWIxUySJEm7lpcL714DuVlw4ImRm0lLKjYWM0mSJO3a18/C8pmQkAKnPekljFIxs5hJkiRp59b9BpMeioxPfAgq1Qk2j1QKWcwkSZK0Y3l5kUsYc7ZAk2Ph8F5BJ5JKJYuZJEmSdmz6S7B0GsRXgNMGewmjtJdYzCRJkrR9636DT+6LjI+/HyrXDzSOVJpZzCRJkrStvFx452+QkwGNu0Lby4JOJJVqFjNJkiRt6+tnYdl0SKgEpz/jJYzSXmYxkyRJUkFr5sJnD0bGJ/7DSxilfcBiJkmSpP+XmxO5hDE3Ew48wVUYpX3EYiZJkqT/99WTsGIWJKbAaU95CaO0j1jMJEmSFLHqJ5j8cGR88iPeSFrahyxmkiRJgpwseKcf5GVD01PgsPODTiSVKRYzSZIkwRePwaofIakqnPaklzBK+5jFTJIkqaxb8T188WhkfMqjUKFmoHGksshiJkmSVJblZMLb/SAvB5qfCS3OCTqRVCZZzCRJksqyyQ/D2jlQvgac8njQaaRikZWTF3SEIrOYSZIklVXLZkaWxwc49QkoXy3QOFJxePu7ZZz29JesSt0SdJQisZhJkiSVRdkZkUsYw3lw6Hlw8GlBJ5L22GdzV3Pr2B+Yt3ojb85YGnScIrGYSZIklUWfPQh/zIcKteHkfwadRtpj0xf9yd9GzCI3L8xZh9flumMPCDpSkVjMJEmSypolX8PXz0bGpw+G5KrB5pH20C8r0rh82Awyc/I4tllNHjn3MGJiStYtHyxmkiRJZUnWZnjnb0AYWvWCg04MOpG0R5b8sZner05n45Yc2jWswrM9WxMXW/JqTslLLEmSpN03cQCsXwSV6sJJ/wg6jbRH1qRtodeQb1i3KZOD96vEK5e0Iyk+NuhYu8ViJkmSVFb89inMeDkyPv1pSEwJNo+0B1LTs+n96nSW/plBg2rJDLusHSlJcUHH2m0WM0mSpLIgYz28e21k3O4KOOC4YPNIeyA9K4fLhs1g7qqN1KyYwIjLO1CzYmLQsfaIxUySJKks+OBW2LgCqh0Ax98fdBppt2Xl5PG3EbP4dsl6KiWWY/jl7alfNTnoWHvMYiZJklTa/TQOfnoLQrFw1ksQX/J/iFXZlJcX5taxs/n817UkxsXw2qXtaFa7UtCxioXFTJIkqTRLWwnv3xwZH30L1GsTbB5pN4XDYQa+9zP/mb2CcjEhXujVhjYNSs+tHixmkiRJpVU4DO9eA1s2wH6toMvtQSeSdttTn85n2NdLCIXgsfNa0rVpzaAjFSuLmSRJUmk181VY8CnEJsDZL0FsyV2xTmXbsKmLefKT+QDcf/ohnNGqbsCJip/FTJIkqTT6YwF8fHdk3O0+qNE00DjS7nr3++UM+M/PANzU7SAu7tgw2EB7icVMkiSptMnNgbevgux0aNQZOvQLOpG0WybNXcMtY2YD0OfIhlx/3AEBJ9p7LGaSJEmlzVdPwLIZkFAJzngOYvyRTyXPtIV/0G/Et+TkhTmzVR3uPbU5oVAo6Fh7jX9LJUmSSpOVs2Hyw5HxyY9A5frB5pF2ww/LNtB32Ewyc/LodnBN/tWjJTExpbeUgcVMkiSp9MjeAv++EvJy4ODToOUFQSeSiuzX1Rvp/ep0NmXm0LFxNZ7p2Zq42NJfW0r/K5QkSSorPnsA1s6F8jXh1CehFF/2pdLp9z/S6fXKN2xIz6ZV/cq8fElbEuNig461T+yTYvbLL7/si6eRJEkquxZ9AV8/Gxmf/jSUrx5sHqmIVqVu4aIh01izMZOmtSoy9NJ2VEgoF3SsfWavFrNvv/2Wc845h5YtW+7Np5EkSSrbtqTBO1cDYWjdG5qeFHQiqUj+3JxFryHfsPTPDBpUS+b1y9tTOTk+6Fj7VJEraEZGBtOmTWPNmjXUrFmTI444gqSkpAJzvvzySx588EEmTpxIOBwmOTm52AJLkiTpf3x0J6T+DpUbwIn/CDqNVCRpW7K55NXp/LZmE/ulJDLi8g7UrJQYdKx9rkhnzIYOHUrdunXp1q0bPXv2pFu3btSvX5+xY8cCsGLFCk477TS6dOnCxx9/TGJiIjfddBMLFy7cK+ElSZLKvDnvw/cjgRCc9QIkVAw6kVRoGVm59B06kx+Xp1K1fDyvX96B+lXL5kmdQp8x++KLL7j88ssJh8OkpKRwwAEHsHHjRhYsWMBFF11E1apV6dOnD8uXLychIYF+/fpx5513UqtWrb2ZX5IkqezauAr+c11kfNT10ODIYPNIRZCVk8ffRn7L9MV/UjGhHMMva88BNSsEHSswhS5mTz75JOFwmFtvvZUHH3yQ+PjINZ/z58/nnHPO4bTTTmPLli0cccQRvPHGGzRs2HBvZZYkSVJeXuRzZRl/Qu1D4Zi/B51IKrTcvDA3vfk9k+etJTEuhlcvbUeLuilBxwpUKBwOhwszsW7dulSoUIF58+Zts+/zzz/nmGOOISUlhSVLllCpUqViD1qSpKWlkZKSQmpqapn/vZAkSXvJtBfgozugXCJcNQVqNA06kVQo4XCYO8f9yJszlxIXG+KVS9rR5aAaQcfaawrbDQr9GbN169bRqlWr7e5r164dAJ07d7aISJIk7W2rf4GJ90bGJzxoKVOJEQ6HefCDObw5cykxIRh8weGlupQVRaGLWXZ2NuXLl9/uvq2rLlarVq14UkmSJGn7cjLh31dAbiYccDy06xt0IqnQBn/6G0O+XATAP885jJMP3S/gRNFjn9xgWpIkScXk0/th9U+QXA3OeBZCoaATSYXy6peLeOKTXwG499Tm9GhbP+BE0aVI9zH78ssvueyyy4q8PxQKMWTIkKKnkyRJ0v9bOBm+fiYyPuNZqOjq1yoZxsxYyv3v/wLATd0O4rJOjQJOFH0KvfhHTMzun1wLhULk5uYW6TGDBg1i1qxZfPvttyxatIgGDRqwePHiIj/3t99+y9///ne+/vpr8vLyaNOmDffffz+dO3feZm5WVhYPP/www4YNY9myZdSuXZsLLriAAQMGFOkm2S7+IUmSil36n/D8UbBxBbS5FE57MuhEUqG8+/1ybnzze8Jh6NupEX8/5WBCZehMb2G7QaHPmL322mvFEqyw7rrrLqpWrUrr1q3ZsGHDbh1jxowZdOnShZo1a3LPPfeQkJDASy+9xHHHHcf48ePp1q1bgfk9e/Zk3LhxXHzxxXTu3JnZs2fz2GOPMXPmTCZOnLhH5VSSJGm3hcPw/o2RUlbtADjxoaATSYXy0U+ruHnMbMJh6Nlh/zJXyoqi0GfM9rWFCxfSuHFjAFq0aMGmTZuKfMasY8eO/Pjjj/zyyy/sv//+AKSmpnLIIYeQnJzMvHnz8r8xJkyYwEknncR1113H4MGD84/x2GOPceutt/L666/Tq1evQj2vZ8wkSVKx+m4kvHs1xJSDvp9AncODTiTt0qR5a7hy+Eyyc8OcfXhdHu3RkpiYslfKiv2M2b62tZTtroULFzJt2jT69OmTX8oAUlJS6Nu3LwMHDuSbb77hiCOOAGDkyJEA3HLLLQWOc/XVV3PPPfcwYsSIQhezrTZv3kxsbOw222NjY0lMTCwwb0diYmJISkrarbnp6ensqHeHQqECl2cWZW5GRgZ5eXk7zPHX1TuLMnfLli07veS1KHOTk5PzS3dmZiY5OTnFMjcpKSn/zGlWVhbZ2dnFMjcxMTH/e6Uoc7Ozs8nKytrh3ISEBMqVK1fkuTk5OWRmZu5wbnx8PHFxcUWem5uby5YtW3Y4Ny4uLv/m9UWZm5eXR0ZGRrHMLVeuHAkJCUBkSd/09PRimVuUv/e+R2x/ru8RvkeU2feIPxfBu7dCVhi63kJs1YNJ/MtjfY+I8D0iut4jPp+znH6vzyIzJ4+TDqnNgJObkJER+TtQ1t4jdvb3roBwCXDIIYeEGzRoUKTHjBo1KgyEX3rppW32TZgwIQyEn3rqqfxtTZs2DdepU2e7x+rYsWO4SpUqO3yuLVu2hFNTU/O/li5dGgZ2+NW9e/cCj09OTt7h3C5duhSYW7169R3Obdu2bYG5DRo02OHc5s2bF5jbvHnzHc7939/7tm3b7nBu9erVC8zt0qXLDucmJycXmNu9e/ed/r791bnnnrvTuZs2bcqfe8kll+x07po1a/LnXn311Tudu2jRovy5t956607n/vTTT/lzBwwYsNO506dPz5/7yCOP7HTupEmT8uc+88wzO537/vvv58997bXXdjp3zJgx+XPHjBmz07mvvfZa/tz3339/p3OfeeaZ/LmTJk3a6dxHHnkkf+706dN3OnfAgAH5c3/66aedzr311lvz5y5atGinc6+++ur8uWvWrNnp3EsuuSR/7qZNm3Y699xzzy3wPbyzub5HRL58j/j/L98jIl++R0S+fI+IfPke8f9f0fYe8fCzr+50bll9j0hNTQ3vTKHPmF199dWFnbqNUCjEs88+u9uP3x3Lly8HoF69etvs27pt2bJlBeY3b958u8eqV68eX3/9Nenp6dtdBGTQoEEMHDiwOGJLkiRJJdaPy1J5dtJvQccokfbqqoyhUIhwOLxbqzL+1e58xuyBBx7g3nvv5dNPP+XYY48tsG/hwoU0adKEa665hmeeiSw5Gxsby1FHHcWUKVO2OVbv3r15/fXXWbt2LdWrV99mf2ZmZoFTsGlpadSvX58VK1Zs9zpSL1Pa/lwvQYiuSxC8TAkvZfQ9oshzfY+I8D2i6HO3+/d+2bcw/AwI58Lpz8KhZ+947g74HrF7c32PiCjqe8Rv69K54KVprN+0hTb1KvDSxW1Jit/2Yz1l7T0iLS2NOnXqBLcq4w8//MALL7yw0+B709Y3gO39QW/N9Nc3ieTk5B1+U2xv/l8lJCTk/wH8Vfny5Qu8CexIYebsztyiLPFflLl/fdMuzrl//Z9Mcc7d0Z/Pns6Nj4/P/0sa1Ny4uLj8N6vinFuuXLn8N+LinBsbG1vo7+GizI2Jidkrc0Oh0F6ZC3vv773vEUWf63tE0ef6HhGxV98jyuXBR9dDXB606AFHXLzjub5HAL5H7M7c4nyPWLB2E71e+YYN6dkc3qAaw/t2oELCrv/ul4X3iMKeoCp0MbvkkksKNe+XX35h4MCBjBs3jry8POrVq8ddd91V2KcpNnXr1gUKXq641fYuc6xbt+52526dX6VKlSK96UiSJO22j+6E9YsgpT6c8ljQaaSdWvpnOhe9/A3rNmXRfL9KDLu0faFKmQoqthtzzZ07lwsvvJDDDjuMsWPHst9++/HMM8/w22+/0a9fv+J6mkJr164dAFOnTt1m39ZtW+dsHa9YsYIlS5YUmJuRkcH3339fYK4kSdJe88u78N0IIARnvQBJlYNOJO3QytQMLnx5GqvStnBAzQq8fnl7UpILdxZOBe1xMZs3bx4XXXQRhx56KG+++Sa1a9dm8ODBLFiwgKuvvrrQp1L3xMqVK5k7d26Ba7ebNGlC+/btGTt2LEuXLs3fnpaWxpAhQ2jSpEn+UvkQubk0RO5b9lfPP/88GRkZRV4qX5Ikqcg2LIX/XBcZd7oRGnYKNI60M2s2buGil79h2foMGlZL5o2+HahWoXCXcmpbu32Ocf78+dx///2MHj2a3NxcateuzZ133slVV11V6Gtrd+b111/PP3u1du1asrKyePDBBwGoXLky1157bf7c/v37M2zYMCZNmkTXrl3ztw8ePJiuXbty9NFHc/311xMfH8+LL77IypUr+fDDDwvcdfzkk0/mzDPP5OmnnyY1NZXOnTsze/ZsnnvuObp27cpFF120x69JkiRph/Jy4d9XwpZUqNsGjvl70ImkHfpzcxYXvzKdhes2U7dyEiOvOIKalQr/2T1tq8jFbMGCBdx///2MGjWKnJwcatWqxR133EG/fv2K9EHKXRkyZAiff/55gW333HMPAA0aNChQzHakQ4cOTJkyhb///e/cd9995Obm0rZtWz755JMCBW6r0aNHM2jQIIYPH87o0aOpVasWN998MwMGDNitVSklSZIKbcqj8PtUiK8I57wCsV4OpuiUmpFN71e/Yd7qjdSsmMAbV3SgbuXCL9Si7Sv0cvkLFy7kgQceYOTIkeTk5FCzZk1uv/12/va3vxVpxZyyIC0tjZSUlF0uiSlJkgTA79PgtZMhnAdnvQQtzw86kbRdmzNzuHjIN8z6fQPVysfz5lVHcEDNikHHimqF7QaFPmPWrFkzcnNzSUpK4oYbbuCaa64hOTmZjRs3snHjxl0+vmbNmoV9KkmSpLIjYwOM6xspZYedbylT1ErPyuGyoTOY9fsGUpLieP3yDpayYlSkG0z/9TNZRXqSUGinN9srbTxjJkmSCiUchrF94Jd3oEpDuOoLSPRnB0WfLdm5XDZ0BlMX/EHFhHKM6NuBlvUrBx2rRCj2M2b777//bhczSZIkbcd3r0dKWUw5OOdVS5mi0pbsXK4YPpOpC/6gfHwsQy9rbynbCwpdzBYvXrwXY0iSJJUxa3+F8XdExsfeDfXaBJtH2o7MnFz+NuJbvpi/jqS4WF67tD1tGlQJOlap5FKDkiRJ+1pOJoy7DLLToVEXOPKGoBNJ28jKyeOakd8xad5aEuNieLVPO9o3qhp0rFKr0MUsJyeHNWvWkJqaut39f/zxB1dddRX16tUjMTGRxo0bc9tttxVqYRBJkqQy5ZOBsOpHSKoKZ70I3pZHUSY7N4/rR33HJ3NWk1Auhld6t6Njk2pBxyrVCv0uMHToUPbbbz+eeuqpbfalpqZy5JFH8sorr7BixQqysrJYvHgxjz/+ON26dStTC39IkiTt1PxPYNqzkfGZz0Gl/YLNI/2PnNw8bhz9PR/9vIr42Bhe6t2WTgdWDzpWqVfoYjZ58mRCoRBXXHHFNvv+8Y9/MH/+fJKTk3n66af58ccfefvtt2nUqBEzZ85kyJAhxRpakiSpRNq4Gt7pFxm3vwqanhxsHul/5OaFuWXsbD74cSVxsSFeuLg1XQ6qEXSsMqHQy+UfcsghxMfH8913322zr3bt2qxdu5ZHHnmEW265JX/7/PnzOfjgg+natSuffPJJ8aWOci6XL0mStpGXByPPgQWfQa0W0PdTiEsMOpWULzcvzG1vzebfs5ZTLibEcxe15oRDagcdq8QrbDco9Bmz1atX07Rp0222//LLL6xZs4aYmBj69OlTYN+BBx5I+/bt+fHHHwufXJIkqTSa9myklJVLgnOGWMoUVfLywvT/9w/8e9ZyYmNCPH3h4ZayfazQxWzjxo3k5uZus/3rr78GoEWLFlSrtu0HAvfff382bNiw+wklSZJKuhXfRRb8ADjpH1CzWbB5pL8Ih8Pc/e5PjJm5jJgQPHl+K04+1M8+7muFLmZVq1bl119/3Wb7F198QSgUokOHDtt9XHZ2tpfzSZKksitzI7x1OeRlw8GnQZtLg04k5QuHwwz4z8+88c3vhELw+HmtOK1lnaBjlUmFLmYdOnTgp59+YsKECfnb1q1bxzvvvAPA8ccfv93HzZkzhzp1/MOVJEllUDgM798Efy6ASvXgtMEQCgWdSgIipeyB9+cw/OslhELwr3NbcubhdYOOVWYVuphdc801hMNhzjzzTC655BJuvfVW2rVrR1paGnXq1OH000/f5jGLFy9m3rx5tGzZslhDS5IklQjfjYAfx0IoFs59FZK9Oa+iQzgcZtD4ubz61SIAHj77UM5tUy/gVGVbucJOPP7447nnnnt44IEHeP311wmFQoTDYRITE3nttdeIi4vb5jHPP/884XCYE088sVhDS5IkRb01c+DD2yLjY++G/bf/sQ9pXwuHw/xrwjxemrIQgAfPbMH57fYPOJUKXcwABg4cyOmnn87bb7/N2rVrqVevHhdddBGNGzfe7vz4+HhuuOEGTj7Ze3RIkqQyJCsdxl4KORnQ5Fg46sagE0nA/5ey5yYvAOC+05rT64gGAacSFOE+Zio872MmSVIZ95/rYNZwqFAL+n0JFWoGnUgiHA7zyIR5PP/fUjbgtOZcelSjgFOVfoXtBkU6YyZJkqRd+PGtSCkjBGe/ZClTVAiHw/zzo3m88LmlLFpZzCRJkorLHwvgvRsi4863QeOugcaRYNtSdt9pzeljKYs6FjNJkqTikJMJb10KWZtg/yOhyx1BJ5IIh8M8/NFcXvw8stCHpSx6WcwkSZKKw8R7YeVsSKoK57wCsf6YpWD9bykbePohXHJkw2BDaYd8x5AkSdpTc96Hb16IjM96AVK8Sa+CFQ6HeXj8XF7875L4959xCL07Ngw2lHaq0DeYliRJ0nZs+B3evToy7ngtHOT9WxUsS1nJ5BkzSZKk3ZWbDW9dDltSoW4bOG5A0IlUxoXDYQaNn5t/8+gHzjiEiy1lJYLFTJIkaXdNegiWTYeEFDj3VSgXH3QilWHhcJh/fDiHl79YBFjKShqLmSRJ0u747RP48onI+PTBUKVhoHFUtm1Tys5swcVHNAg4lYrCYiZJklRUaSvh31dFxm0vh0PODDSOyrZwOMxDH8zhlS8jpezBM1vQy1JW4rj4hyRJUlHk5sBbl0H6OqjVAk78R9CJVIZZykoPz5hJkiQVxaQH4fepEF8RzhsOcYlBJ1IZFQ6HefCDOQz5byl76KwWXNTBUlZSWcwkSZIK69cJ//+5sjOehmpNgs2jMisvL8x97/3M8K+XAJay0sBiJkmSVBgbfod/XxkZt78KDjkr2Dwqs/Lywvz9nZ8YNf13QiF4+OxDOb/d/kHH0h6ymEmSJO1KThaM7QNbNkCd1nDCA0EnUhmVmxfmjnE/8Na3y4gJwb/Obck5beoFHUvFwGImSZK0KxPvheXfQmIK9BgK5RKCTqQyKCc3j1vGzubd71cQGxPi8fNackarukHHUjGxmEmSJO3ML+/CN89Hxme+AFX8HI/2vezcPG5883s++GEl5WJCDL7wcLoful/QsVSMLGaSJEk78scCePfayPjI66FZ92DzqEzKysnjulGzmPDzauJiQzzbszUnHFI76FgqZhYzSZKk7cneAmMvgcw02L8jHHdv0IlUBm3JzuXqkbP4bO4a4svF8GKvNhzTrGbQsbQXWMwkSZK256M7YdWPkFwNzn0VYuOCTqQyZkt2Lle+/i1Tfl1LQrkYXrmkLUcfWCPoWNpLLGaSJEn/64cx8O1rQAjOfhkq1Qk6kcqY9Kwc+g6bydQFf5AUF8uQPm05skn1oGNpL7KYSZIk/dXaefDejZFxl9vhgOMCjaOyZ1NmDpe9NoPpi/+kfHwsr13anvaNqgYdS3uZxUySJGmrrM0wpjdkb4ZGnaHLHUEnUhmTtiWbPq9OZ9bvG6iYUI6hl7WnTYMqQcfSPmAxkyRJAgiH4f2bYe1cqFALzhkCMbFBp1IZkpqeTe9Xv2H2slQqJZZjRN8OHFavctCxtI9YzCRJkgBmDYMfRkMoJrLYRwVXvtO+s35zFr2GfMPPK9KokhzH65d3oEXdlKBjaR+ymEmSJC2fBR/eFhkfew807BRsHpUpazdmcvGQb5i7aiPVK8Qzom8HmtWuFHQs7WMWM0mSVLal/wljLoHcLGjaHY66MehEKkNWpmZw0cvfsHDdZmpUTGDUFR04oGbFoGMpABYzSZJUduXlwri+kPo7VGkEZz4PMTFBp1IZseSPzVz0yjcsW59B3cpJjOzbgYbVywcdSwGxmEmSpLLr83/Cgk+hXBKcPwKSKgedSGXEb2s2ctEr37A6LZOG1ZIZecUR1K2cFHQsBchiJkmSyqZfP44UM4DTnoTaLQKNo7Lj5xWp9B4ynT82Z3FQrQqMuLwDNSslBh1LAbOYSZKksmf9Yvj3FZFx28uh5QWBxlHZMev39fR5dTppW3I4tG4Kwy9rT5Xy8UHHUhSwmEmSpLIlOwPevBi2bIC6beCkQUEnUhnx9YI/6DtsBpuzcmnboAqvXtqOSolxQcdSlLCYSZKksuXDW2HVD5BcDc4bDuUSgk6kMmDSvDX0e/1bMnPy6HRAdV7q3YbkeH8U1//zu0GSJJUd3w6D70YAIThnCKTUCzqRyoCPflrJdaO+Izs3zHHNavLsRa1JjIsNOpaijMVMkiSVDSu++8tNpP8OTY4JNo/KhLe/W8atY38gNy/MKYftx5PntyIu1lsyaFsWM0mSVPql/wljekNuJhx0MnS6JehEKgNGfrOEu9/5iXAYzm1Tj3+ecxixMaGgYylKWcwkSVLplpcH/74SNvwOVRrCWS94E2ntda98sZAHP5gDwCUdGzDgtEOIsZRpJyxmkiSpdJvyCPw2EcolwnmvexNp7VXhcJinP/uNxyf+CkC/Lk2446SmhEKWMu2cxUySJJVe8yfC5Icj41OfgP0OCzaPSrVwOMzDH83lxc8XAnDL8Qdx7bEHWMpUKBYzSZJUOv25EMZdDoShzaXQqmfQiVSK5eaFufudnxg1/XcA7j7lYPoe3TjgVCpJLGaSJKn0ydwEoy+CLalQty2c/M+gE6kUy8rJ46Yx3/PBDysJhWDQWYdyQfv9g46lEsZiJkmSSpdwGP5zLaz5BcrXhPNf9ybS2msysnLpN+JbPv91LXGxIZ48/3BOOWy/oGOpBLKYSZKk0mXqYPj5bYgpB+cNh0p1gk6kUio1I5vLh85g5pL1JMXF8sLFbehyUI2gY6mEsphJkqTSY8Fn8Ml9kfFJD0ODjoHGUem1dmMmvV+dzpyVaVRMLMfQS9vRpkHVoGOpBLOYSZKk0mH9YnjrMgjnQate0K5v0IlUSi1bn06vV75h8R/pVK+QwPDL2tO8TqWgY6mEs5hJkqSSLysd3uwFGeuhzuFwymPgEuXaC35bs5Fer0xnVdoW6lZOYkTfDjSqXj7oWCoFLGaSJKlkC4fhvRtg1Y+QXB3OHwFxiUGnUin047JULnltOn9uzuKAmhUYcXkHaqf4vabiYTGTJEkl27Tn4ccxEIqF84ZBSr2gE6kU+nrBH1wxfCabMnM4rF4KQy9tT9Xy8UHHUiliMZMkSSXXoinw8d2R8Yn/gIadgs2jUumTX1Zz9RuzyMrJ44jGVXm5d1sqJsYFHUuljMVMkiSVTBuWwtg+EM6Fwy6ADlcFnUil0DvfLeeWsbPJzQvT7eBaPNPzcBLjYoOOpVLIYiZJkkqe7IzIYh/pf0Dtw+C0J13sQ8Vu+NeLuffdnwE4+/C6PHLuYZSLjQk4lUori5kkSSpZwmF4/yZY+T0kVYULRkJcUtCpVIqEw2Ge+ew3Hpv4KwB9jmzIvac2JybG8q+9x2ImSZJKlukvw+xREIqBHkOh8v5BJ1IpkpcX5v73f2Ho1MUA3HDcgdzY7UBCnpHVXmYxkyRJJceiKfDRnZHx8Q9A4y7B5lGpkpWTxy1jZ/Pe7BUA3Htqcy7r1CjgVCorLGaSJKlkWL8YxlwSWezj0B7Q8ZqgE6kU2ZSZw99GfMsX89dRLibEY+e15IxWdYOOpTLEYiZJkqJf5kYYdSFk/Al1DofTn3axDxWbPzZlcunQGfywLJXk+Fie79WGLgfVCDqWypioXlZm1KhRtGnThqSkJKpXr86FF17IkiVLdvm4yZMnEwqFdvr11VdfFWp+q1at9uIrlCRJu5SXB2/3gzW/QIVacMEbLvahYrP0z3R6vPA1PyxLpUpyHG9ccYSlTIGI2jNmzzzzDNdddx1HHXUUTzzxBOvWrePJJ59kypQpzJgxgzp16uzwsQcffDCvv/76NtszMzO58sorqV69Ou3bt99m/5VXXsnRRx9dYFvVqlX3/MVIkqTd9/nDMPd9iI2H80dCpR3/DCAVxdxVaVzy6nRWp2VSt3ISwy9vT5MaFYKOpTIqKovZH3/8Qf/+/WndujWTJ0+mXLlIzJNOOon27dtz77338sorr+zw8bVq1aJXr17bbB81ahR5eXn07t2buLht79besWPH7T5OkiQF5Od34PN/RsanPgn12wWZRqXIjMV/cvnQGaRtyaFprYoMu6w9tVMSg46lMiwqL2V899132bRpE9dff31+KQNo27YtnTt3ZsyYMWRlZRX5uFvLXN++fXc4Jz09nS1bthQ9tCRJKl4rf4B3/hYZH3ENHH5RsHlUakz8ZTW9XvmGtC05tG1QhTFXdbSUKXBRWcymT58OwJFHHrnNviOPPJKNGzcyd+7cIh1z0aJFTJo0iU6dOtG0adPtzrnhhhsoX748SUlJNGrUiAceeIDs7OyivwBJkrRnNq+D0RdBdjo0PgaOvz/oRColxsxcSr8R35KZk8dxzWry+uUdSEne9koqaV+LyksZly9fDkC9evW22bd127JlyzjssMMKfcxXX32VcDi83bNlcXFxnHrqqXTv3p169eqxatUqRo8ezb333stXX33FBx98QGxs7A6PnZmZSWZmZv6v09LSCp1LkiT9j5wsGNMbUn+Hqo2hx2sQG5U/sqgECYfDvPD5Qv75UeQf93u0qcegsw+lXGxUnqdQGRSV73Lp6ekAJCQkbLMvMTGxwJzCyM3NZejQoVSqVIkePXpss/+oo47ivffeK7DtiiuuoG/fvgwZMoQ333yTnj177vD4gwYNYuDAgYXOI0mSduKjO2DJVxBfES4cDUlVgk6kEi4vL8xDH85hyJeLAOjXpQl3nNSUkLdcUBSJyn8iSE5OBihwFmqrjIyMAnMKY8KECSxbtowLL7ywSI+75557APjggw92Oq9///6kpqbmfy1durTQzyFJkv5ixisw81UgBOe8AjW2//EDqbCycvK4ecz3+aXs7lMO5s6Tm1nKFHWi8oxZ3bqRu6wvW7aMAw88sMC+nV3muCNDhgwBdr7ox/bUr1+f2NhY1q5du9N5CQkJ2z27J0mSimDxlzD+jsj4uHuh6UnB5lGJtzkzh6tHzuLzX9dSLibEv3ocxlmHF/5nSGlfisozZu3aRZbCnTp16jb7pk6dSoUKFWjWrFmhjrVmzRree+89DjvsMNq2bVukHAsXLiQ3N5fatWsX6XGSJKmI1i+GNy+GvBxocS50uinoRCrh1m7M5MKXp/H5r2tJiovllUvaWsoU1aKymJ1xxhkkJyczePBgcnJy8rfPnDmTKVOmcN555xEfHw/AypUrmTt37g4/czZ8+HCys7N3erZs1apV22zLzc2lf//+AJx++ul78nIkSdLOZG6KrMCY8Sfs1xJOfxq8zEx7YNG6zZzz/FR+WJZK1fLxvHFFB7o2rRl0LGmnQuFwOBx0iO156qmnuPHGGznqqKO4+OKLWbduHU888QRxcXHMnDkz/3LHPn36MGzYMCZNmkTXrl23OU7z5s1ZtGgRK1asoEqV7X94uHXr1lSrVo1OnTpRt25dVq9ezdixY5k9ezZnn302b731VpGuQ05LSyMlJYXU1FQqVaq0W69fkqQyIS8X3uwF8z6E8jXhykmQ4lkN7b7vfl/P5cNm8ufmLPavmsywy9rTqHr5oGOpDCtsN4jKz5hB5J5i1atX57HHHuPGG28kOTmZ448/nkGDBuWXsl2ZOnUqc+bMoWfPnjssZQDnn38+//nPf3j22WdZv349ycnJtGjRghdffJG+ffv64VBJkvaWT+6LlLLYBLjgDUuZ9sgnv6zm2lGz2JKdx2H1UhhySTtqVHQdAJUMUXvGrCTzjJkkSYXw3Qh495rI+OxX4LBtb2kjFdbIb5Zwzzs/kReGY5rW4JmerSmfELXnIFSGlPgzZpIkqRRb/BW8d2Nk3Pl2S5l2Wzgc5omJvzL4s98AOL9tfR46q4U3jlaJYzGTJEn71p8LI58ry8uG5mdA1/5BJ1IJlZ2bx13//pGx3y4D4IbjDuTGbgf6MRSVSBYzSZK072xJhTcuiKzAWOdwOPMFiPHMhorur/coi40J8dCZLbig/f5Bx5J2m8VMkiTtG7k5MPZSWDcPKtaBC0ZBfHLQqVQCrdm4hcuGzuCn5WkkxcXy7EWHc2yzWkHHkvaIxUySJO0bE+6CBZ9CXDJcOAoq7Rd0IpVAC9du4pLXprP0zwyqlY/n1T7taFm/ctCxpD1mMZMkSXvfjFdg+ouR8VkvQp1WgcZRyTTr9/VcPnQG69OzaVAtmWGXtqeh9yhTKWExkyRJe9eCz+DD2yPj4+6F5qcHm0cl0sRfVnPdf+9R1rJeCkP6tKN6Be9RptLDYiZJkvaetb/CmD4QzoWWF0Knm4NOpBLo9a8XM+A/P5MXhmOb1eSZnoeTHO+PsSpd/I6WJEl7R/qf8MZ5kJkK9Y+A054ClzFXEeTlhRk0fg4vf7EIgAva1efBM71HmUoni5kkSSp+OVkwpjesXwSV94cLRkI5LztT4WVk5XLTm9/z0c+rALjtxKZc3bWJ9yhTqWUxkyRJxSschg9ugsVfQHxFuPBNKF896FQqQdZtyqTvsJl8v3QD8bEx/KvHYZzRqm7QsaS9ymImSZKK1xePwXcjIBQD574KtZoHnUglyIK1m+jz3+XwKyfH8dLFbWnfqGrQsaS9zmImSZKKz49vwWcPRMbd/wUHnRBsHpUo3yz8gytf/5bUjGz2r5rMa5e2o0mNCkHHkvYJi5kkSSoeS76Gd/4WGXe8Ftr1DTaPSpR3v1/ObWN/ICs3j8P3r8wrvdtSzeXwVYZYzCRJ0p77YwGMvhBys6DZqXD8A0EnUgkRDod5dtJvPPrxrwCc3KI2T5zfisS42ICTSfuWxUySJO2ZzX/AyHMhYz3UbQNnvwwxLmeuXcvOzePvb//ImJnLALiqc2PuOKkZMTGuvKiyx2ImSZJ2X/YWGN0T/lwIKfvDhaMhPjnoVCoB0rZkc/WIWXz52zpiQjDw9EO4uGPDoGNJgbGYSZKk3ZOXB+9eA0unQUIKXDQWKtQMOpVKgOUbMrjstRnMW72R5PhYnul5OMc2qxV0LClQFjNJkrR7Jj0EP70FMeXg/OFQs1nQiVQC/LQ8lUuHzmDtxkxqVkzg1T7taFE3JehYUuAsZpIkqehmvQ5fPBoZnzYYGncNNI5Khgk/r+LG0d+TkZ1L01oVee3SdtSpnBR0LCkqWMwkSVLRLJgE798YGXe+DQ6/KNA4in7hcJiXpizk4Y/mEg7D0QdW59mLWlMpMS7oaFLUsJhJkqTCWzMHxvSGvBxocS4c8/egEynKZeXkcfc7/7/y4sVHNGDAac0pF+vKndJfWcwkSVLhbFwNI8+DzDTYvyOc+RyEXNZcO7YhPYt+I75l2sI/iQnBvac2p89RjYKOJUUli5kkSdq1zE0w6nxI/R2qNoEL3oByCUGnUhRbtG4zlw2dwaJ1m6mQUI6nLzycY5q5aqe0IxYzSZK0c7k58NalsOI7SKoaWRY/uWrQqRTFvl7wB/1GfEtqRjZ1KycxpE9bmtWuFHQsKapZzCRJ0o6Fw5GFPuZ/DOWSoOcYqNYk6FSKYmNmLOWut38kJy9Mq/qVebl3W2pU9OyqtCsWM0mStGOfPwLfvQ6hGDj3VajfLuhEilJ5eWH+OWEuL36+EIDTWtbhX+ceRmJcbMDJpJLBYiZJkrZv1usw+R+RcfdHoVn3YPMoaqVn5XDTm98z4efVAFx/3IHc1O1AQi4OIxWaxUySJG1r/kR474bI+OhboN3lweZR1FqVuoW+w2fw0/I04mNjeOTcwzjz8LpBx5JKHIuZJEkqaPksGHMJhHOh5YVw7D1BJ1KU+ml5KpcPm8HqtEyqlY/npd5taNPAhWGk3WExkyRJ/+/PRfDGeZC9GRofA6cN9l5l2q7xP67k5jGzycjO5cCaFXi1TzvqV00OOpZUYlnMJElSxOY/YOS5sHkt1D4UzhsO5eKDTqUoEw6HGfzpbzzxya8AdD6oBs/0PJxKiXEBJ5NKNouZJEmCrHQYdQH88Ruk1IeeYyHR+06poIysXG4dO5sPflwJwGVHNeKu7s0oFxsTcDKp5LOYSZJU1uXlwr+vgGXTIbEy9BoHlfYLOpWizIoNGVwxfCY/r0gjLjbEQ2ceynnt6gcdSyo1LGaSJJVl4TCMvx3mvg+xCXDhaKjRNOhUijLfLlnPVa9/y7pNkUU+Xri4De0ausiHVJwsZpIklWVfPAYzXgFCcM7L0KBj0IkUZd76dhl3/ftHsnLzOHi/Srzcuw31qrjIh1TcLGaSJJVV3w6Dzx6IjE96GJqfEWweRZXcvDD//GguL01ZCMCJh9Ti8fNaUT7BHx+lvcG/WZIklUVz3of3b4yMj74FjugXaBxFl7Qt2dww6jsmzVsLwPXHHsCN3Q4iJsZbJ0h7i8VMkqSyZvFX8NZlEM6D1r29gbQKWLxuM32Hz+S3NZtIKBfDoz1aclrLOkHHkko9i5kkSWXJqp9g1IWQmwnNToVTnvAG0so39bd1/G3kLFIzsqldKZGXe7fl0HopQceSygSLmSRJZcX6xTDibMhMhf2PhHNegVh/FFDkptGvT1vCwPd+ITcvTMv6lXn54jbUrJQYdDSpzPDdWJKksmDTWnj9LNi0GmoeAheOgrikoFMpCmTm5HLff35h1PTfATjr8LoMOvtQEuNiA04mlS0WM0mSSrvMjTDyXPhzIVTeP3ID6aTKQadSFFiTtoW/jZzFt0vWEwrB7Sc2o1+XxoS8vFXa5yxmkiSVZjmZ8GYvWPk9JFeDXm9Dpf2CTqUo8N3v6+k34ltWp2VSMbEcgy88nGOa1gw6llRmWcwkSSqt8vLg7X6wcDLEV4CL3oLqBwSdSlFgzIyl3P3OT2Tl5nFAzQq83LstjaqXDzqWVKZZzCRJKo3CYfjoDvj53xATB+ePgLqtg06lgGXn5vHA+78w/OslAJzQvBaPn9+KCt40WgqcfwslSSqNpjwK018CQnD2i9DkmKATKWDrNmVy9chZTF/0JwA3dTuI6449wJtGS1HCYiZJUmkz/WWY9GBkfPIj0OKcYPMocD8uS+Wq12eyInULFRLK8cT5rTi+ea2gY0n6C4uZJEmlyew34cNbI+Mud0CHK4PNo8D9e9Yy+v/7RzJz8mhcvTwv9W7LATUrBB1L0v+wmEmSVFrM/RDe+Vtk3KEfdO0fbB4FKic3j0Hj5zLky0UAHNusJk9e0IpKiXEBJ5O0PRYzSZJKg0VTYGwfCOdCy55w4iDwXlRl1p+bs7j2jVlMXfAHANcdewA3dTvIz5NJUcxiJklSSbfsWxh1IeRmQrNT4fSnISYm6FQKyM8rUrly+Lcs35BBcnwsj/VoycmHeu86KdpZzCRJKslW/wIjz4GsTdCoC5wzBGL933tZ9fZ3kc+TbcnOY/+qybzcuy1Na1cMOpakQvCdW5KkkurPRfD6WZCxHuq2hQvegLjEoFMpAFk5eTz0wS8M++/9yTofVIPBF7SicnJ8wMkkFZbFTJKkkihtJQw/AzatgprN4aKxkOBKe2XR6rQtXD1yFt8uWQ/A9ccewA3dDiLWz5NJJYrFTJKkkib9T3j9TNiwBKo0govfhuSqQadSAL5Z+AfXvPEd6zZlUjGxHE+c14pu3p9MKpEsZpIklSSZG2HEObB2LlTcD3q/CxVrB51K+1g4HGbIl4sYNH4uuXlhmtWuyAu92tCwevmgo0naTRYzSZJKiuwtkdUXV8yCpKpw8TtQpUHQqbSPbc7M4Y5xP/D+DysBOKNVHQadfSjJ8f5YJ5Vk/g2WJKkkyMmCMb1h8RcQXxF6jYOazYJOpX1s4dpN9BvxLb+u3kS5mBB3n3IwlxzZkJD3rJNKPIuZJEnRLjcHxl0O8ydAuUToORrqtg46lfaxCT+v4pYxs9mUmUONigk8d1Fr2jX0s4VSaWExkyQpmuXlwjt/gzn/gdh4uGAkNOwUdCrtQ7l5YR77eB7PTV4AQLuGVXi2Z2tqVvLWCFJpYjGTJClahcPw/o3w4xiIKQc9hsEB3YJOpX3oz81ZXD/qO778bR0Alx7VkLu6H0xcbEzAySQVN4uZJEnRKByG8XfArOEQioGzX4Zm3YNOpX3o+6UbuGbkLJZvyCApLpaHzzmUM1rVDTqWpL3EYiZJUrQJh+GTATD9xcivz3gOWpwdbCbtM+FwmOFfL+HBD34hOzdMw2rJvHBxG5rVrhR0NEl7kcVMkqRo8/kj8NVTkfGpT0CrC4PNo31mU2YOd/5lKfwTD6nFv3q0pFJiXMDJJO1tFjNJkqLJV0/B5H9ExicOgraXBZtH+8y8VRv528hvWbh2M+ViQtx5cjMu79TIpfClMsJiJklStPjmJZh4b2R87D3Q8epg82ifeevbZdz9zo9syc6jdqVEnr3ocNo0cCl8qSyxmEmSFA1mDYfxt0XGnW+DzrcGm0f7xJbsXAa8+zNvzlwKwNEHVufJ81tRrUJCwMkk7WsWM0mSgvbDWPjP9ZFxx2vhmL8Hm0f7xOJ1m/nbyFnMWZlGKAQ3HncQ1x57ALExXroolUUWM0mSgvTTv+Htq4AwtL0cTngQ/ExRqffRTyu5bewPbMzMoVr5eJ664HA6HVg96FiSAmQxkyQpKD+/A+P6QjgXWvWC7o9aykq57Nw8Hh4/lyFfLgKgXcMqPH1ha2qnJAacTFLQLGaSJAXhl//AW5dFSlnLnnD6YIiJCTqV9qIVGzK49o1ZzPp9AwBXdm7MbSc2JS7WP3dJFjNJkva9Oe/DW5dGStlhF8AZz0BMbNCptBd9/utabhz9HevTs6mYWI7HerTkhENqBx1LUhSxmEmStC/N/QDGXgJ5OXBoDzjzOUtZKZadm8fjE3/l+ckLAGhRtxLP9WzD/tWSA04mKdpE9bnzUaNG0aZNG5KSkqhevToXXnghS5YsKdRju3btSigU2u7XO++8s838rKws7r//fpo0aUJCQgINGjTgjjvuID09vZhflSSpzJo3Hsb8t5S1OBfOfMFSVoot35DBBS9Nyy9lvY7Yn7f6HWkpk7RdUXvG7JlnnuG6667jqKOO4oknnmDdunU8+eSTTJkyhRkzZlCnTp1dHqN69eo88cQT22xv27btNtt69uzJuHHjuPjii+ncuTOzZ8/mscceY+bMmUycOJEYr/uXJO2JXyfAmN6Qlw2HnA1nvQixUfu/Ye2hib+s5taxs0nNyKZiQjn+ee5hdD90v6BjSYpiUfl/hD/++IP+/fvTunVrJk+eTLlykZgnnXQS7du359577+WVV17Z5XHKly9Pr169djlvwoQJjBs3juuuu47Bgwfnb2/YsCG33norb7zxRqGOI0nSds2fCG/2gtwsaH4mnP2ypayUyszJ5eHxc3ntq8UAtKyXwtMXtvYsmaRdisrTQO+++y6bNm3i+uuvzy9lEDnT1blzZ8aMGUNWVlahjpWXl0daWhp5eXk7nDNy5EgAbrnllgLbr776apKSkhgxYsRuvApJkoDfPoHRF0VK2cGnwzmvWMpKqSV/bObc57/OL2V9OzVirJcuSiqkqCxm06dPB+DII4/cZt+RRx7Jxo0bmTt37i6Ps3z5cipUqEBKSgrly5ene/fuzJw5c7vPV6dOHRo0aFBge1JSEq1atcrPI0lSkfz2KYzqCbmZ0OxUOPdViI0LOpX2gvd/WMEpg7/kx+WpVE6OY8glbbn71ObEl4vKH7UkRaGo/Ce75cuXA1CvXr1t9m3dtmzZMg477LAdHqNhw4YceeSRHHrooSQkJPDdd98xePBgjjrqKMaPH8+xxx5b4PmaN2++3ePUq1ePr7/+mvT0dJKTt/8vXpmZmWRmZub/Oi0tbdcvUpJUui2YBKP/W8qangLnvmYpK4W2ZOdy//u/8MY3vwORG0Y/dcHh1KmcFHAySSVNVBazrSshJiQkbLMvMTGxwJwdGTp0aIFfn3322fTq1YvWrVvTr18/fv311wLPt73n+t/n21ExGzRoEAMHDtxpHklSGTL/E3jzIsjZAgedDD2GQrn4oFOpmP22ZhPXvjGLuas2EgrBNV0P4MZuB1LOG0ZL2g1R+c6xtQD99SzUVhkZGQXmFEXTpk0577zzmD9/PvPnzy/wfNt7rsI+X//+/UlNTc3/Wrp0aZGzSZJKiXkfwegLI6WsaXc4b5ilrBQa9+0yTnv6S+au2kj1CvEMv6w9t57Y1FImabdF5RmzunXrApHLFQ888MAC+3Z2mWNhNGzYEIC1a9fmH7tu3bosW7Zsu/OXL19OlSpVdlrMEhISdnjGTZJUhsx5H8b2iSyJf/DpcM4QS1kpszkzh3vf/ZlxsyI/NxzZpBpPnt+KmpUSA04mqaSLyn/WadeuHQBTp07dZt/UqVOpUKECzZo1261jbz1TVrt27QLPt2LFim1uXp2RkcH333+fn0eSpB36+R0Ye8n/36fs3FctZaXMD8s2cOrTXzJu1jJiQnDz8Qfx+uUdLGWSikVUFrMzzjiD5ORkBg8eTE5OTv72mTNnMmXKFM477zzi4yP/s1u5ciVz584t8Jmz9evXb3c5/ZkzZzJmzBgOOeQQGjdunL+9Z8+eADz22GMF5j///PNkZGR4DzNJ0s79+Ba8dRnk5cCh5/33PmUu9FFa5OWFefHzBZzz/FQWrdvMfimJjLriCK4/7kBiY0JBx5NUSoTC4XA46BDb89RTT3HjjTdy1FFHcfHFF7Nu3TqeeOIJ4uLimDlzZv7ljn369GHYsGFMmjSJrl27AvDOO+9w1VVX0aNHDw444AASEhL4/vvvGTp0KOXKleOTTz6hY8eOBZ7vrLPO4p133qF379507tyZ2bNn89xzz3H00Ufz6aefEhNT+A6blpZGSkoKqampVKpUqdh+TyRJUWj2m/BOPwjnQauL4PSnISY26FQqJmvStnDzmNl8+ds6AE46pDYPn3MolZM9GyqpcArbDaLyM2YAN9xwA9WrV+exxx7jxhtvJDk5meOPP55Bgwbll7Idadq0KV26dOGjjz5i9erVZGZmUqdOHXr16sWdd965zefWAEaPHs2gQYMYPnw4o0ePplatWtx8880MGDCgSKVMklSGfDcC3r0WCEPr3nDqU+D/M0qNT+es5ra3fuDPzVkkxsUw4LRDuKBdfUIhz5JJKn5Re8asJPOMmSSVATNfg/dvjIzbXg7dH7WUlRJbsnN5ePxchk5dDEDz/Sox+MLDOaBmhWCDSSqRSvwZM0mSotb0l+HDWyPjDv3gpIfBsyilwq+rN3L9qO+Yu2ojAJcd1Yg7Tm5KQjkvT5W0d1nMJEkqimnPw0d3RsYdr4UTHrSUlQLhcJgR3/zOg+//QmZOHtXKx/Noj5Yc06xm0NEklREWM0mSCuuLx+DT+yPjTjfDcfdaykqB9ZuzuGPcD3z8y2oAjj6wOo+d15KaFV0GX9K+YzGTJGlXwuFIIfvy8civu9wBXftbykqBqQvWcdOb37M6LZO42BB3nNSMy45qRIzL4EvaxyxmkiTtTF5e5NLF6S9Gfn38/XDUDcFm0h7Lysnj8Ym/8uKUBf/X3n1HR1Xmfxx/Z9I76SGFJAQITaRLL6ugoi6KCoqC2HdXBWR1V2wI6g93V0VZy8pasKMsIIKIiqKg1CgdAggkhPQQ0vvM/f0xEIwJmCBwJ8nndU5Ocp97Z/INZ04yH57nfh8MA9qGeDP3hh50jfQ3uzQRaaEUzERERE7FZoVPJ8PW9wAnuOI56HO72VXJ77Q/q4gpC7ayO6MQgHG9o5nxx854ueltkYiYR7+BRERE6lNdCUvugl1LwMkCV78KF95gdlXyO9hsBm+vT+aZz5OoqLYR4OXK7DEXcFnX1maXJiKiYCYiIlJHVTksvAX2rQSLK1z3JnT+o9lVye+QVVjOAwu3sXZ/LgBDO4Twr+u6EeqnBh8i4hgUzERERH6pohgW3AiH1oCLB4x7H9pfYnZV8jus2JHBw0t2kF9ahbuLhUeu6MSEfjE4qXmLiDgQBTMREZETyvLh/evhyCZw84XxH0HsQLOrkjNUVF7FjE93sfinNAC6RvrxwrgetAv1MbkyEZG6FMxEREQASnLh3ashcwd4tIIJiyGyl9lVyRnadCiPaR9v5cixMixO8Odh8Uy5uANuLhazSxMRqZeCmYiISGE6vDMacveBdyhM/ATCuphdlZyBymobc1bt4z/f2dvgRwd6Mmdsd3rHBppdmojIaSmYiYhIy3b0gH2mLP8w+EXBxKUQ3M7squQM7M8qYupHW9mVbm+Df32vKB6/qjO+Hq4mVyYi8tsUzEREpOXK2AbvXQslORDY1h7KWrUxuyppJJvN4J31ycxWG3wRacIUzEREpGVK/h4+vBEqCiG8G9y8CHxCza5KGunIsVIeXLid9QePAjCkQwjPqg2+iDRBCmYiItLyJK2AhZPAWgExg+DGD8DD3+yqpBEMw+DjxFSeXL6H4opqPF2dmT6qo9rgi0iTpWAmIiIty5b34dP7wLBCwhX2zaNdNbvSlGQVlvPQou2s3psDQO+YAJ69/kJig71NrkxE5MwpmImISMvxw1z46jH7191vhqteBGf9KWwqDMPg023pPL50FwVlVbg5W3jg0g7cPqgtzhbNkolI06a/RiIi0vwZBqx6An54wX48YDKMmAVa8tZkHC2u4LGlO1mxIxOACyL9eW7shXQI8zW5MhGRs0PBTEREmjdrNSyfClvetR9fMhMGTTWzImmkL3Zl8siSHeQWV+JiceK+P7TnL8PjcXXWZtEi0nwomImISPNVVQ6Lboek5eBkgavmQs8JZlclDVRQVsXMT3exeEsaAB3CfHh+bHe6RqpRi4g0PwpmIiLSPJUXwoLxkLwWnN3tTT46XWl2VdJA3+3L4e//205mYTkWJ7hrSDz3j2iPu4uz2aWJiJwTCmYiItL8FGbA+9dD1g5w87W3w48bYnZV0gDFFdX834o9fLDxMACxQV48N/ZCesUEmlyZiMi5pWAmIiLNS85eeO9aKEgF71C4aSFEdDe7KmmANftymL54B2n5ZQBMGhDL3y5LwMtNb1dEpPnTbzoREWk+Dm+AD8ZBeT4EtYObF0FArNlVyW8oLK/i6eV7+CgxFYCoAE/+eW03BrQLNrkyEZHzR8FMRESahz3LYNEdUF0OUX3gxo/AO8jsquQ3fJOUxcOLd5JZWA7YZ8kevDQBb3e9RRGRlkW/9UREpOnb9F9Y8SBgQMIouPYNcPMyuyo5jfzSSmYt213TcTE2yIt/XnchfeN0L5mItEwKZiIi0nQZBnw9C75/3n7caxKMeg6c9efNka3cmcmjn+wkt7gCJye4Y1Ac00Yk4Ommjosi0nLpL5eIiDRN1ZWwbDJs+9B+PPxRGPIAODmZW5ec0tHiCmZ8uovl2zMAiA/x5l/XX0jPNgEmVyYiYj4FMxERaXoqiuDjiXDgG3Byhj/OhR43m12VnIJhGCzfnsGMT3eRV1KJs8WJu4a0ZcrF7fFw1SyZiAgomImISFNTlAXvXweZ28HVG8a+De1HmF2VnEJ2UTmPfbKTL3ZlAdAx3Jd/XteNblGtzC1MRMTBKJiJiEjTkZ0EH1wP+YfBOwTGfwyRPc2uSuphGAaLf0pj1vLdFJRV4WJx4i/D23Hv8Ha4uVjMLk9ExOEomImISNNw8Fv4aCJUFEBgW/seZYFtza5K6nH4aCmPfLKDtftzAegS4ce/rruQzhF+JlcmIuK4FMxERMTxbXkPlk0BWzVE94MbPtAeZQ6o2mrjzR8O8fxX+yivsuHmYmHKxe25a0hbXJ01SyYicjoKZiIi4rgMA755CtY+az/ueh2MfhlcPcytS+rYmVbAQ4u3szOtEIB+bQOZPaYbccHeJlcmItI0KJiJiIhjqiqHpffAzv/Zj4c8CMMeBotmXhxJWaWVF77ex+trD2G1Gfh5uPDIFZ0Y2zsaJ21dICLSYApmIiLieEqOwkc3weH1YHGBq15UO3wH9MPPuUxfvIPDeaUAXHFBa2b8sTOhvprRFBFpLAUzERFxLEcP2Nvh5x0Ed38Y9y60HWp2VfIL+aWVPPXZHv734xEAwv08ePLqrozoHGZyZSIiTZeCmYiIOI6UdbBgPJQdg1ZtYPxCCO1odlVynGEYLNuewaxlu8gtrsTJCW6+KIa/XZaAr4er2eWJiDRpCmYiIuIYti+EpX8BayVE9oIbF4BPqNlVyXFHjpXy+NJdfJOUDUC7UB/+ce0F9IoJNLkyEZHmQcFMRETMZbPB6qdPdl7sdBVcMw/cvMytSwCostp48/tDvLBqP2VVVlydnbhneDv+PCwedxdns8sTEWk2FMxERMQ8lSWw5G7Ys8x+PHAKXPyEOi86iB9T8nhkyU6SMosA6BsbyNPXdKV9mK/JlYmIND8KZiIiYo6CI/DhjZC5HZzd7J0Xu483uyrB3tzjHyuT+HBTKgABXq5MH9WJ63tFqQW+iMg5omAmIiLn35FEeygryQavYLjhfWjTz+yqWjzDMFiyJY2nP9vD0ZJKAMb2juKhyzsR6O1mcnUiIs2bgpmIiJxf2xfaN462VkBoF7jxQwiIMbuqFu9ATjGPLtnJ+oNHAWgf6sNTV3florZBJlcmItIyKJiJiMj58esmHwmjYMw8cNf9SmYqr7Lyyuqf+c93B6m02vBwtTD54vbcMagtbi66109E5HxRMBMRkXOv3iYfM8Cirn5mWrs/h0c/2UnK0VIAhiWE8OTorkQHqiOmiMj5pmAmIiLnlpp8OJyswnKe+mwPy7alAxDm584TV3Xhsq7hau4hImISBTMRETl3UtbDxxOgJEdNPhxAldXG/B+SeWHVPkoqrVic4JYBsUwb0QFfD1ezyxMRadEUzERE5OwzDEh8Ez7/G9iqIawr3PCBmnyYaN2BXGYs3cX+7GIAerRpxZOju9I10t/kykREBBTMRETkbKuugBUPwk9v24+7XAOjXwY3b3PraqEyC8p5esXJZYuB3m48dHlHrusZhcWiZYsiIo5CwUxERM6eokz4aAIc2QQ4wSUzYOBU0H1L512V1cZbPxzixVX7a5Yt3twvhr+OSMDfS8sWRUQcjYKZiIicHUcSYcFNUJwJHv5w7ZvQ/hKzq2qR1v2cy+Of7uLn48sWe7ZpxSwtWxQRcWgKZiIi8vtteQ+W3w/WSgjpaL+fLCje7KpanIyCMp76bA+fbc8AIOj4ssVrtWxRRMThKZiJiMiZs1bBFw/Dpnn2445XwjX/0abR51lltY03fzjE3K/3U3p82eKEfjFM07JFEZEmQ8FMRETOTHEOLJwEKd/bj4c/AoMfAIvF1LJamtV7s3ly+W4O5pQA0CsmgFmju9AlQssWRUSaEgUzERFpvNTN8PFEKEoHN18YMw86jjK7qhblYE4xTy7fzeq9OQAE+7jx0OWdGNMjUssWRUSaIAUzERFpOMOAza/Dyulgq4LgDjDuPQhJMLuyFqOwvIp/f72ft35Iptpm4OrsxK0D47j3D+3w0ybRIiJNloKZiIg0TGWJvcHH9o/sx51H2/cn0/1k54XVZrAwMZV/fbGXoyWVAPyhYyiPXtGJtiE+JlcnIiK/l4KZiIj8tqMH4KObIXs3ODnDiFnQ/x7tT3aebE7OY+ayXexMKwSgbYg3j13ZmeEJoSZXJiIiZ4uCmYiInN6e5fDJn6GiELxD4fr5EDvQ7KpahPT8MmZ/nsSybekA+Lq7MOWS9kzsH4ubi5qsiIg0JwpmIiJSP2s1fPMk/PCC/Ti6nz2U+bU2s6oWobzKymvfHeTV736mvMqGkxPc0Ceav45MINjH3ezyRETkHFAwExGRuopzYNFtcGiN/bjfX+zLF53VXOJcMgyDZdsz+MfnSaTllwHQNzaQx6/qTNdItb8XEWnOFMxERKS2wxvt+5MVpYOrN4z+N3S91uyqmr0fU/J4cvketqbmAxDh78H0UZ24sltrnHQvn4hIs6dgJiIidjYbrP83rJoJhhWC2ttb4Yd2NLuyZu3w0VL+sTKJz3ZkAODl5syfhsZz5+C2eLo5m1ydiIicLwpmIiICpXmw5E+w/wv7cddr4aoX1Qr/HCooq+Klb/bz9roUKq32+8jG9ormryM7EOrnYXZ5IiJynimYiYi0dIc3wv9uhcI0cHaHy/8BvSapFf45UmW18f6GFF78ej/HSqsAGNw+mIdHdaJTaz+TqxMREbMomImItFS/XroYGA9j34bwC8yurFkyDINVe7KZvWIPB3NLAGgX6sMjV3RiWIcQ3UcmItLCKZiJiLREWrp4Xu1MK+Cpz3az4WAeAEHebtw/ogM39InGxVn7kYmIiIKZiEjLo6WL501afhnPf7mPxVuOYBjg5mLhjkFx/HlYPL4e2npAREROUjATEWkptHTxvMkvreSVbw8wf10yldU2AEZ3j+DBSxOICvAyuToREXFECmYiIi1BURZ88mc48LX9WEsXz4nyKivz1yXzyuqfKSyvBuCiuECmj+pE9+hW5hYnIiIOTcFMRKS52/+VPZSV5ICLB1w2G3rdqqWLZ5HVZrDoxyM8/9U+MgvLAegY7svfL++oxh4iItIgCmYiIs1VdQWsegI2vGI/Du0C172pDaPPohOdFv+5Mon92cUARLbyZNqIDlzdIxJniwKZiIg0jEO3gvrwww/p1asXnp6eBAcHc+ONN5KSkvKbjzt27BgvvvgiI0eOJDo6Gk9PTxISErjrrrtITU2tc/23336Lk5NTvR/du3c/Bz+ZiMg5lrMPXr/4ZCjrezfc+Y1C2Vn0Y0oeY19bz53vJLI/u5hWXq48ekUnvv7rUK7tFaVQJiIijeKwM2YvvfQS9913HwMHDmTOnDnk5ubywgsvsGbNGjZv3kxERMQpH7tx40amTZvGH/7wB+655x6Cg4PZtWsXr732Gh9//DHr1q2jc+fOdR531113MXjw4FpjgYGBZ/1nExE5ZwwDfnoHVj4EVaXgFQSjX4GEy8yurNn4ObuIf67cy5e7swBwd7Fw26A4/jQ0Hn9PdVoUEZEz45DB7OjRo0yfPp2ePXvy7bff4uJiL/Oyyy6jb9++PP7447z++uunfHzHjh3Zu3cv7dq1qzV+xRVXMGLECGbMmMHChQvrPK5///7cfPPNZ/eHERE5X8qOwbIpsHup/bjtMLjmNfANN7Ws5iItv4y5q/az8MdUbAZYnGBs72imXtKBcH8Ps8sTEZEmziGD2dKlSykuLmby5Mk1oQygd+/eDBkyhI8//phXXnkFNze3eh8fGxtb7/gll1xCYGAgO3bsOOX3Li0txWKx4OGhP7Ii0oSkrIdFd0DhEbC4wMWPQ//7wOLQK9abhJyiCl5e/TMfbDxMpdXe+n5E5zD+dmkC7cPU1VJERM4Oh/yLvWnTJgAGDBhQ59yAAQMoKioiKSmp0c9bUFBAUVERoaGh9Z6fMmUK3t7eeHp6EhcXx5NPPklVVVWjv4+IyHlTXWnfl2z+KHsoC2wLt38FA6colP1O+aWV/GNlEkP+udq+H5nVxkVxgfzvT/3578TeCmUiInJWOeSMWVpaGgBRUVF1zp0YO3LkCN26dWvU8z711FNUVVVxyy231Bp3dXXlyiuvZNSoUURFRZGZmcmCBQt4/PHH+eGHH/jss89wdnY+5fNWVFRQUVFRc1xYWNioukREzkj2Hlh8J2QeXwVw4XgY9U/tTfY7FVdU89b3h5i39iBFx/ciuzC6FQ+M7MCgdsFqfS8iIueEQwaz0tJSANzd3eucO7HE8MQ1DfXxxx/z3HPPMWLECG699dZa5wYOHMiyZctqjd15553ccccdvPHGG3z00UeMHz/+lM89e/ZsZs6c2ah6RETOmM0GG1+1z5RZK8Az0L5ZdOc/ml1Zk1ZeZeW9DSm88u0B8koqAfteZH8dmcAlnUIVyERE5JxyyHUuXl5eALVmoU4oKyurdU1DrFixggkTJtCjRw8WLlyIpYHLex577DEAPvvss9NeN336dAoKCmo+6mvJLyJyVuSnwjt/hC8etoey9iPhLxsUyn6HKquN9zemMOxf3/LUZ3vIK6kkLtibF2/ozorJgxnROUyhTEREzjmHnDGLjIwE7MsV27dvX+vc6ZY51mflypWMGTOGjh078uWXX+Lv79/gOqKjo3F2diYnJ+e017m7u9c7uycictYYBmz/GFY8ABWF4OoFlz4NvW4FhYYzYrUZLN2axgur9nM4z74KI8LfgymXtOfanlG4ODvk/12KiEgz5ZDBrE+fPrz22musW7euTjBbt24dPj4+dOz425ukfvHFF1xzzTV06NCBr7/+mqCgoEbVcfDgQaxWK+HhajUtIiYqzYPlU0+2wY/qY2+DHxRvallNldVmsHx7OnO/3s+BnBIAgn3cuXd4PDde1AZ3l1PfUywiInKuOOR/B44ePRovLy/mzp1LdXV1zXhiYiJr1qxh7NixNa3yMzIySEpKqnPP2ZdffsnVV19N+/bt+eabbwgODj7l98vMzKwzZrVamT59OgB//KOWCImISfavglf620OZxQWGPwq3rlQoOwMnZshGzvmOKQu2ciCnBH9PV/52WQJr/jaMSQPjFMpERMQ0ToZhGGYXUZ8XX3yRqVOnMnDgQCZMmEBubi5z5szB1dWVxMTEmuWOkyZN4u2332b16tUMGzYMsAe4wYMHYxgGzzzzTL2h7JcbSffs2ZOgoCAGDRpEZGQkWVlZLFy4kG3btjFmzBj+97//Ner+gsLCQvz9/SkoKMDPz+/3/UOISMtUXgBfPgo/vWM/Du4AY+ZBRA9z62qC6psh8/d05c7BcdwyIBZfD1eTKxQRkeasodnAIZcygn1PseDgYJ577jmmTp2Kl5cXI0aMYPbs2TWh7FR27txJeXk5APfff3+91/wymI0bN45PP/2Ul19+mWPHjuHl5UXXrl157bXXuOOOO3TTt4icXz+vgk8nQ6H9nlou+hNc8gS4eppaVlOjQCYiIk2Jw86YNWWaMRORM/LrWbKAOBj9MsQONLeuJkaBTEREHEmTnzETEWlR6pslu/hxcPM2t64mRIFMRESaMgUzEREzaZbsd6u22vh0Wzovr/5ZgUxERJosBTMREbNolux3qai2sujHNF797mdS88oAeyC7Y1ActwyMxU+BTEREmhAFMxGR863sGHz5GGx5136sWbJGKa2s5sNNqfx3zUEyC+2NnoK83bhtUBwT+scokImISJOkYCYicr4YBuz+BFb8DUqy7WOaJWuwwvIq3l2fwhvfHyKvpBKAcD8P7hrSlhv7tsHTTXuQiYhI06VgJiJyPhSkwWd/hX2f24+DO8BVcyGmv7l1NQF5JZW8+f0h3l6fTFF5NQBtAr3487B4xvSM1KbQIiLSLCiYiYicSzYbJL4Bq2ZCZRFYXGHwNBj8V3BxN7s6h5ZVWM68NQf5YONhyqqsALQP9eGe4e24sltrXJwtJlcoIiJy9iiYiYicK9lJsGwypG60H0f1hT/OhdBO5tbl4JJzS5i39iD/SzxCpdUGwAWR/twzvB0jO4dhsTiZXKGIiMjZp2AmInK2VVfA2udh7XNgqwI3H7jkCeh9O1g0y3MqW1PzmbfmAJ/vzMQw7GN9YgO4Z3g7hnYIwclJgUxERJovBTMRkbMpZT0smwK5e+3HHS6HK54F/yhz63JQhmHw7b4c/vPtATYeyqsZv7hjKHcPjadvXKCJ1YmIiJw/CmYiImdDyVH46nHY+p792DsURv0TOl8Nmumpo7LaxrJt6cxbc5C9WUUAuFicGN09kruGtCUh3NfkCkVERM4vBTMRkd/DZoMt78CqJ+z7kwH0nAgjZoFngKmlOaLiimoWbDrMG98fIqPAvgeZt5sz4y9qw22D4mjt72lyhSIiIuZQMBMROVMZ2+GzaXBks/047AK48nmI7mtuXQ4ou6ic+T8k896GFAqPt7wP9nHntkGx3HRRDP6e2hRaRERaNgUzEZHGKi+E1f8Hm14Dw2Zv7jH8Eeh7Fzjr1+ov7c0s4s3vD7FkaxqV1fYOi22DvblrSFuu7hGJh6v2IBMREQEFMxGRhjMM2LUYVj4MxZn2sS5j4NKnwS/C3NociM1m8N3+HN78/hBr9+fWjPdo04o/DY1nRCe1vBcREfk1BTMRkYbI3Q8rHoCD39qPA9vCqGeh3cWmluVIyiqtLN5yhDe/P8SBnBIALE4wsnM4tw+Oo3dMgFrei4iInIKCmYjI6ZQXwnf/gI3/AVs1OLvD4L/CwCng6mF2dQ4hq7Ccd9Yn88HGwxwrrQLAx92Fsb2juXVgLNGBXiZXKCIi4vgUzERE6mOzwdb34euZUJJjH2t/KVz+jH22TNiZVsAb3x9i+fZ0qqz2HaGjAjyZNCCWcX2i8fVQQw8REZGGUjATEfm11M3w+d8g/Sf7cVA7uOwZaD/C3LocgNVmsGpPFm98f4hNv9gQundMALcPimNkl3Ccdf+YiIhIoymYiYicUJhh349s+wL7sZsvDPs79L0bXNxMLc1sx0oq+SgxlXfXp5CWXwbYN4QedUFrbh8Ux4XRrcwtUEREpIlTMBMRqa6A9S/D2uegstg+1uNmuHgG+ISaW5vJdhwp4J31yXy6LZ2K4+3uW3m5cmPfNkzsH6MNoUVERM4SBTMRabkMA5I+gy8fhWOH7GNRfeDyf0BkL3NrM1FFtZXPd2Ty9vpkthzOrxnvEuHHLQNi+eOFEdp/TERE5CxTMBORlintR/jyMUj5wX7sEw4jZsIFY8FiMbc2k2QUlPHBxsN8uOkwucWVALg625crTuwfS882rdTuXkRE5BxRMBORliX/MHw9C3YstB+7eED/e2DQ/eDua25tJjAMg42H8nhnfTJf7MrCarN3Vwz38+Cmi9pwQ982hPi6m1yliIhI86dgJiItQ3mB/R6yDf8BawXgBBfeAH94DPwjza7uvCsoq2LJT0f4YNNh9mUV14xfFBfILQNiGdE5DFfnljlzKCIiYgYFMxFp3qxVkPgWfPcMlB61j8UOhpFPQUR3U0s73wzDYEtqPh9sPMzy7emUV9mbeXi6OnNNz0gm9o+hY7ifyVWKiIi0TApmItI8GQYkLbe3vz/6s30sOAFGPgntR0ILuleqsLyKpVvSeH/jYZIyi2rGE8J8GX9RG67uEYm/pzaDFhERMZOCmYg0Pwe/g69n2ht8AHgFw/CHoect4Nwyfu0ZhsH2IwV8sPEwn25Lp6zKCoC7i4Uru0Uw/qI2auYhIiLiQFrGOxQRaRnSfrI39ji42n7s6gX9/gIDp4BHy1iiV1xRzdKtaXyw8TC70gtrxtuH+jD+ojaM6RGFv5dmx0RERByNgpmINH25++GbJ2H3UvuxxRV63wZDHmgRG0QbhsFPh/NZmJjKsm3plFTaZ8fcXCxccUFrxl/Uht4xAZodExERcWAKZiLSdBWk2Zt6bHkfDCvgBN3GwfDpEBBrdnXnXHZROYt/SmNhYioHckpqxuNDvBl/UQxjekQS4O1mYoUiIiLSUApmItL0FGfDDy/Cpv8eb30PJIyCPzwKYV3Mre0cq7La+CYpm4WJqazem1Oz75inqzNXdGvN9b2i6BsXqNkxERGRJkbBTESajpJc+OEF2PQ6VJfZx9oMgEuegDYXmVnZObcvq4iPN6eyZEsaR0sqa8Z7xQQwtncUV3SLwMddv9JFRESaKv0VFxHHV3IU1h2fIasqtY9F9IThj0C7i5tt6/vC8iqWbUvn48QjbEvNrxkP8XVnTM9Iru8VTbtQH/MKFBERkbNGwUxEHFdpHqybCxvnQdXxe6giesCw6c12L7Jqq421+3NZvCWNL3dlUlFt3wTaxeLExZ1CGds7mqEdQnBxtphcqYiIiJxNCmYi4nhK82D9y7DxP1BZbB9rfaE9kHW4rNkFMsMw2JlWyOItR1i2LZ3c4pNLFduH+jCuTzRX94gk2MfdxCpFRETkXFIwExHHUZwN61+CzW+cDGThF9gDWcKoZhfI0vLL+GRLGku2pPFzdnHNeJC3G1ddGMGYnpFcEOmvRh4iIiItgIKZiJgv/zD8MBe2vAvV5faxsK4w7CFIuAIszWfZXmF5FZ/vyGDxT2lsPJRXM+7uYmFE5zDG9IxkcPsQXLVUUUREpEVRMBMR8+Tuh+/nwPaPwFZtH4vsbd8YuhktWayotvLd3hyWbktn1e6smvvGAPq1DWRMjyguuyAcPw9XE6sUERERMymYicj5l7EN1j4Pu5cC9n24iBsKg/8KcUOaRSCrttpYd+Aoy7als3JXJkXl1TXn2oX6cE2PSK7uEUlkK08TqxQRERFHoWAmIueHYUDy9/Yui/u/PDmeMAoGTYPoPubVdpbYbAabk/NYtj2dFTsyyfvFfmNhfu5c2S2Cq7tH0jXST/eNiYiISC0KZiJyblmrYfcnsO7fkLHVPuZkgS5jYND9EN7VzOp+N8Mw2HakgGXb0vlsewaZheU15wK93Rh1QThXdYugT2wgFovCmIiIiNRPwUxEzo2KIvjpXdjwChSk2sdcPKD7TdD/HgiKN7e+38EwDHalF/L5zgyWbcvgcF5pzTlfDxcu6xLOVRdGMCA+SPuNiYiISIMomInI2VWYbt9/LHE+VBTYx7yCoe9d0Od28A42tbwzZRgGW1PzWbkzk893ZtYKY56uzlzSOYyrurVmaEII7i7OJlYqIiIiTZGCmYicHelb7YFsx8KTHRaD2sOAe6HbOHBtek0ubDaDHw8fY8WODL7YmUl6wcllih6uFoZ2COHKbhFc3CkULzf9OhUREZEzp3cSInLmrFWw51PY+Bqkbjw5HjMQBtwH7S9tcnuQVVttbDqUx+c7M1m5K5Ocooqac95uzgzvGMqoC1ozLCFEYUxERETOGr2rEJHGK86GH+dD4ptQlGEfs7hCl6vhoj9DVC8zq2u08ior6w7k8uWuLL7cnVWrm6KvhwsjOoVx+QWtGdw+GA9XLVMUERGRs0/BTEQaLu1H++zYriVgPR5efMKg923QaxL4hptaXmPklVTy9Z4sVu3JYs2+XMqqrDXnArxcGdk5nMsvCGdAfDBuLk1r1k9ERESaHgUzETm9qjLY9Qlsfh3SEk+OR/WBvndD59Hg4mZaeY1xKLeEr3Znsmp3NokpediMk+da+3twSacwLusazkVxgeqmKCIiIueVgpmI1C97j3254rYPofx4d0VnN/v+YxfdBZGOv1zRZjPYkprPV7uz+Gp3JgdySmqd79zajxGdwxjROYwuEdr0WURERMyjYCYiJ1WVwe6lkPgWpG44Od6qDfS8xf7hE2JefQ1QUFbF2v05rE7K4bt92eQWn7xfzMXiRL+2QYzoHMbFnUKJCvAysVIRERGRkxTMRASyk34xO5ZvH3NyhoTLofet0PYPDttd0TAMkjKLWL03m2+Tcvjx8DGsv1ij6OvuwrCOoYzoHMbQDiH4e7qaWK2IiIhI/RTMRFqq8gJ7E4+tH9Rude/fBnpNhB4THLaZR3FFNT/8nMu3e7NZnZRDZmF5rfPtQn0YnhDCsIRQ+sQGqnmHiIiIODwFM5GWxGaFQ9/Zw9ieZVB9PNCcmB3rdSvEDweLY7WENwyDvVlFrN2Xy7f7stl0KI8q68lZMQ9XCwPig2vCWHSgliiKiIhI06JgJtIS5O63h7FtC6Ao/eR4SEfofhN0G+tws2PZheWs3Z/L9z/bP3650TNATJAXwxNCGZYQQr+2QdpfTERERJo0BTOR5qrkKOz+xB7Gjmw6Oe7RCi64HrqPh4ge4CCdCEsrq9l4KI/v9+fy/f5c9mYV1Trv4Wqhb1wQwzqEMLxjKHHB3iZVKiIiInL2KZiJNCcVRZC0Anb+Dw58A7Zq+7iTBdqNsIexhMvBxd3cOgGrzWBnWgHf/5zL2v05/JSST6XVVnPeyQm6RvgzqH0wg9sF0zMmQLNiIiIi0mwpmIk0ddUV8PMq2LEQ9q6E6rKT58K72WfHHGCpotVmsDu9kA0Hj7Lh4FE2HcqjqKK61jWRrTwZ3D6YQe2DGRAfTKB309i4WkREROT3UjATaYqsVZD8PexcBHs+PbkBNEBgPFxwHXS9DkI6mFeizWBPxskgtvFQHkXltYOYr4cL/dsGHQ9jIcQGeWmTZxEREWmRFMxEmorqCjiw2h7E9q6AsmMnz/lGQNcx9kDWursp941ZbQZJmYVsOJjH+gNH2XToKIW/DmLuLvSNC6Rf2yD6xwfRqbUfzhYFMREREREFMxFHVlkC+7+yh7F9X0LlLxpieAVDpyvtSxXbDDjvG0CXVlazNTWfxORjJKYcY0vKsTpLE33cXegTG0D/+CD6tQ2ic2s/XJy1p5iIiIjIrymYiTia0ryTYeznr2vfM+YbAZ2usn/EDDiv+43lFFXwY0oem5OPkZicx670QqptRq1rvN2c6XN8Rqxf2yC6RiiIiYiIiDSEgpmI2QwDcpJg30rY9wWkbgTjZHdCWsVA5z9Cp9EQ2eu8zIxZbQb7s4vYejifxBR7EEs+WlrnunA/D3rHBtAnNpBeMQF0DPdVEBMRERE5AwpmImaorrA379j3hT2Q5afUPh/aBTqOgk5/hPALzvk9Y5kF5WxNPcbW1AK2ph5jx5ECSiqtta5xcoKEMN9aQSyylaeadYiIiIicBQpmIudL3iE4uNq+PPHgt1BZfPKcszvEDYEOl9o/WrU5Z2WUVFSzI62Aran5bD2cz9bUfDILy+tc5+3mTLeoVvSKCaBXbAA92wTg7+l6zuoSERERackUzETOlbJ8SF5r3+j5wGo4dqj2eZ+w40Hscmg7FNy8z3oJJRXV7MkoZGdaATvT7Z/3ZRXxq1vDsDhBQrgf3aNb0T3an+7RAbQL9VHHRBEREZHzRMFM5GyxVkHajyeDWFpi7XvFLC4Q1Rfih0P7ERB+4Vm9X6ygrIpd6QXsSitkZ3oBO9MKOJhbgmHUvTbC34PubVpxYVQruke34oIof7zc9OtARERExCx6JyZypqrK7UEs5Qf7/WJHNkPVrxpkBLW3B7H4P0DsIHD3/d3f1jAM0gvKScooJCmziF3pBexMK+RwXt3mHGBv0NE10o8uEf50ibDPioX6efzuOkRERETk7FEwE2moylJ7+Er5AZJ/sH9trah9jWegfVli/B+g7XBoFf27vmVheRV7M4tIyiwiKaOQvZlF7M0qouhXGzefEB3oSdcIf7pG2kNYlwh/Qnzdf1cNIiIiInLuKZiJ1McwoCDVHr6OJELqJsjYBraq2td5h0DMQPtsWMxACOl4RssTyyqtHMgp5kBOMUmZRfYAlllEWn5Zvde7WJyID/EhIdyXrpF+dI3wp3OEH6283M7kpxURERERkymYiYB9Nixjqz2AnQhjxZl1r/ONgNiB9s2dYwZBcPsGt7I3DIO8kkp+zi7mQE7J8c/F/JxdfMoABvb7wRLCfUkI96NTa18Swn1pG+yDm4v2CxMRERFpLhTMpOWpLIHMnfYZsIxtkLkNsnaDUXvfLiwuENYVovtCVB+I6g0Bcb8ZxMoqrRzOKyXlaAnJR0s4kF1iD2A5xeSXVp3ycQFersSH+NAh3JdOx4NYQpgv/l5qUS8iIiLS3CmYSfNWmgeZO44HsO32z7n7gXpaFfqEQ3Qfe+fEqD7Q+kJw86r3aYvKq0g5WkrK0VKSj5aQcrSk5ri+PcFOcHKCqABP4kN8aBfiQ3yoD+1CfYgP8SHQW8sQRURERFoqBTNpHsryIScJsvfU/lycVf/1vq3twSu8m/1zRHfwi6yZDSuuqCYtr4y0/CzSjpVxJL+MtGNlpOWXcfhoKUdLKk9bjp+HC7HB3rQJ9CL+RAAL8SEu2BtPN+ez+7OLiIiISJPn0MHsww8/5Nlnn2X37t14e3szYsQInnnmGWJiYhr0+B9//JFHHnmE9evXY7PZ6NWrF7NmzWLIkCF1rq2srOSZZ57h7bff5siRI4SHh3PDDTcwY8YMvLzqnzWR88xaDQWHIe8g5B2Cowfs4SsnCYoyTv24gFh7+Gp9IYRfSEVIF3IMf7IKK8gqLCctp4y0/QWk5WfWhK+CslMvOTwh2MeNmCBvYoK8iAn0JjbYi5ggb2KDvNSEQ0REREQaxckw6tt+1nwvvfQS9913HwMHDuTmm28mNzeXF154AXd3dzZv3kxERMRpH79582aGDh1KaGgo9957L+7u7sybN4+kpCQ+//xzLrnkklrXX3fddSxatIgJEyYwZMgQtm3bxquvvsrQoUP56quvsDSi015hYSH+/v4UFBTg5+d3Rj9/i1VRBAVp9o6IeQdPfhw9APkpYKu/TTyA4RdJZWAChb7tyPaI47BLDD/bIjhS4kxWUTmZBeVkF1WQ9xuzXSf4e7oS2cqTyABPIlt5EnX8c5sgewDzcXfo/9cQEREREQfQ0GzgkMHs6NGjxMbG0qFDBzZu3IiLi/0NcGJiIn379uW2227j9ddfP+1z9O/fnx07drB7927atGkDQEFBAV26dMHLy4u9e/fidHzZ2hdffMFll13Gfffdx9y5c2ue47nnnuOBBx7g3Xff5eabb25w/Qpm9TAMqCyG4mz78sIT4aswDQqOHP9IhfKC0z5NtcWdfPdIslwjSXMK52cjkl1VEfxUFkpGecNnqdycLYT6uRPm50FEK89fBDAPIlt5ERngqeAlIiIiIr9bkw5mb775Jrfffjvz58/nlltuqXVu2LBh/PTTT+Tm5uLmVv8b8YMHDxIfH8+kSZN46623ap174oknmDlzJuvXr6dfv34ATJw4kXfffZfk5ORayyTLysoICgpiyJAhrFy5ssH1t4hgZq2yh6iyfPvn8mP2r8uOYRRnYS3MxlqcBcU5OJXk4FKajcV66qYYv1SINxlGEMm2UA4Z4aQYYSQb4STbwskkAINTz15anCDE1x64Qn09CPd3J8zXw358PIiF+3nQysu1JpiLiIiIiJwrDc0GDjklsGnTJgAGDBhQ59yAAQP47rvvSEpKolu3bmf0+BPXnAhmmzZtIiIios69a56ennTv3r3m+Zqa3MzDpG5bjWGzga0aw1YNNhsYVgxrNU6GFcNmBVs1FlsVluoynK3lWKrLcKouw1JdjrPVPuZsLcfNWoKHtQhPazEexmk6D2J/YdX34io13Mkx/MkgiDQjiHQjmHQjiAwjiDQjmAwjkGJO3tPn5ASBXm4EersR4+NGT293Ar3dCPJxI8jbjSAf+3GwjxuB3u608nTFYlHgEhEREZGmxSGDWVpaGgBRUVF1zp0YO3LkyCmDWUMf/8vrO3fuXO9zRUVFsX79ekpLS0/ZBKSiooKKioqa48LCwnqvO9/Sdq+jx/rJ5/R7FBqeFOJNoeFNIV7kGz7kGn7k4k+u4U+hJYBit0BKXYModw/C4u6Dn6cr/p6u+HnYP7f1dKW7p4t97Bfj/l6u+Li5KGiJiIiISLPnkMGstLQUAHd39zrnPDw8al1zNh5fWlpa77W/vv5UwWz27NnMnDnzlPWYxd0vhD2unTGcnLFhwebkjOFkwcC55usTn6ud3KiyeFBl8cDq7IHh4oHN2RPD1RPDxRPD1QvD1Rubhz94+INHKywevri6uuHp5oy3uwu+bs6Eu7ng5e6Mt5sLnq7OClUiIiIiIg3gkMHsRACqqKjA09Oz1rmysrJa1/zW43+tvsd7eXnVe21Dv9/06dOZNm1azXFhYSHR0dGnvP586dj7Yuh9sdlliIiIiIjIb3DIYBYZGQnYlxu2b9++1rnTLVOs7/G/Vt/jIyMj6732xPUBAQGnDWbu7u6nnHETERERERH5LQ3fnOs86tOnDwDr1q2rc27dunX4+PjQsWPHM378L6858XV6ejopKSm1ri0rK2Pr1q21rhURERERETnbHDKYjR49Gi8vL+bOnUt19ckNhRMTE1mzZg1jx46taZWfkZFBUlJSrXvG4uPj6du3LwsXLiQ1NbVmvLCwkDfeeIP4+PiajowA48ePB+z7lv3Sq6++SllZWaP2MBMREREREWksh9zHDODFF19k6tSpDBw4kAkTJpCbm8ucOXNwdXUlMTGxZrnipEmTePvtt1m9ejXDhg2refzGjRsZNmwYYWFhTJ48GTc3N1577TX27NnDihUrGDlyZK3vd8011/DJJ58wceJEhgwZwrZt23jllVcYPHgwX3/9NRZLwzNsi9jHTEREREREflOT3scMYMqUKQQHB/Pcc88xdepUvLy8GDFiBLNnz64JZadz0UUXsWbNGh555BGeeOIJrFYrvXv3ZtWqVbUC3AkLFixg9uzZvPPOOyxYsICwsDCmTZvGjBkzGhXKREREREREGsthZ8yaMs2YiYiIiIgINDwbaCpIRERERETEZApmIiIiIiIiJlMwExERERERMZmCmYiIiIiIiMkUzEREREREREymYCYiIiIiImIyBTMRERERERGTKZiJiIiIiIiYTMFMRERERETEZApmIiIiIiIiJlMwExERERERMZmCmYiIiIiIiMkUzEREREREREymYCYiIiIiImIyBTMRERERERGTKZiJiIiIiIiYTMFMRERERETEZApmIiIiIiIiJlMwExERERERMZmCmYiIiIiIiMkUzEREREREREymYCYiIiIiImIyBTMRERERERGTKZiJiIiIiIiYTMFMRERERETEZApmIiIiIiIiJnMxu4DmyDAMAAoLC02uREREREREzHQiE5zICKeiYHYOFBUVARAdHW1yJSIiIiIi4giKiorw9/c/5Xkn47eimzSazWYjPT0dX19fnJycTK2lsLCQ6OhoUlNT8fPzM7UWaRr0mpHG0mtGGkOvF2ksvWaksRztNWMYBkVFRURERGCxnPpOMs2YnQMWi4WoqCizy6jFz8/PIV6Y0nToNSONpdeMNIZeL9JYes1IYznSa+Z0M2UnqPmHiIiIiIiIyRTMRERERERETKZg1sy5u7szY8YM3N3dzS5Fmgi9ZqSx9JqRxtDrRRpLrxlprKb6mlHzDxEREREREZNpxkxERERERMRkCmYiIiIiIiImUzATERERERExmYKZiIiIiIiIyRTMmqkPP/yQXr164enpSXBwMDfeeCMpKSlmlyUOaN++fTz++OP069ePkJAQfH196d69O08//TQlJSVmlydNRGlpKW3btsXJyYk//elPZpcjDqqgoIDp06eTkJCAh4cHgYGBDBgwgCVLlphdmjig4uJinnzySbp27YqPjw8hISEMHDiQ9957z+zSxGSzZ8/m+uuvr/m7Exsbe9rrs7KyuO222wgLC8PDw4Nu3brx3//+9/wU2wguZhcgZ99LL73Efffdx8CBA5kzZw65ubm88MILrFmzhs2bNxMREWF2ieJA3nzzTV566SWuuuoqxo8fj5ubG6tXr+bRRx/l448/ZsOGDXh6eppdpji4xx9/nJycHLPLEAeWmprK8OHDycvL49Zbb6Vz586UlpaSlJTE4cOHzS5PHIzNZuPSSy9lw4YNTJo0icmTJ1NSUsK7777LhAkT2LdvH7NmzTK7TDHJww8/TGBgID179iQ/P/+01+bn5zNo0CDS0tKYOnUqcXFxLF26lLvuuov09HRmzJhxfopuCEOaldzcXMPHx8fo2bOnUVVVVTO+efNmw8nJybj99ttNrE4c0ebNm41jx47VGX/kkUcMwHjppZfOf1HSpPz000+Gs7Oz8eyzzxqAcffdd5tdkjigoUOHGuHh4cbhw4fNLkWagHXr1hmAMXXq1FrjpaWlRnh4uBEWFmZSZeIIDhw4UPN1ly5djJiYmFNe+9BDDxmAsWjRolrjV111leHq6mocPHjwXJXZaFrK2MwsXbqU4uJiJk+ejIvLyQnR3r17M2TIED7++GMqKytNrFAcTe/evWnVqlWd8bFjxwKwY8eO81yRNCVWq5U777yTSy+9lGuvvdbscsRBrV27lu+++46///3vREdHU11draXScloFBQUAdVb5eHp6EhAQgJeXlxlliYNo27Ztg699//33iYuLY8yYMbXGp02bRlVVFR999NHZLu+MKZg1M5s2bQJgwIABdc4NGDCAoqIikpKSzndZ0gSlpaUBEBoaanIl4sheeOEFdu/ezUsvvWR2KeLAVqxYAdjfTI0ZMwZPT098fHyIjY3Va0fq1bdvX/z8/PjnP//JwoULSU1NZc+ePdx///3s3buXJ554wuwSpQnIzMwkNTWV/v371znXv39/nJycat47OwIFs2bmxJvpqKioOudOjB05cuS81iRNj9VqZdasWbi4uHDTTTeZXY44qJSUFGbMmMFjjz1GXFyc2eWIAzvxH4J33HEHaWlpvPHGG7zzzju0bt2a++67jyeffNLkCsXRBAYG8sknn+Dv78/YsWNp06YNnTt3Zv78+SxdupSJEyeaXaI0Aad7X+zu7k5wcLBDvS9W849mprS0FLC/2H7Nw8Oj1jUipzJ58mQ2bNjAU089RUJCgtnliIP685//TExMDA888IDZpYiDKyoqAsDb25s1a9bU/I0aN24cnTt3Zvbs2dx7770EBASYWaY4mICAAHr06ME111zDgAEDyM/P59VXX2Xs2LEsWrSIyy+/3OwSxcGd7n0x2N8bO9L7Ys2YNTMn1lxXVFTUOVdWVlbrGpH6PProo7zyyivccccdPPzww2aXIw7qgw8+4PPPP+fVV1/F1dXV7HLEwZ3o7Dp+/Phab5Dc3Ny46aabKCsrY+PGjWaVJw5ox44d9O/fn0suuYR//etfXHPNNdx6662sXbuWmJgYbrvttnrf64j80uneF4P9vbEjvS9WMGtmIiMjgfqXK55uOlcE4IknnuDpp59m4sSJvPbaazg5OZldkjigyspK7r//fq688kratGlDcnIyycnJNb93ioqKSE5Orrl5X+TE353WrVvXOXdiLC8v77zWJI5tzpw5lJeXc/3119cad3d35+qrryYzM1P3zMtvOt374vLyco4ePepQ74sVzJqZPn36ALBu3bo659atW4ePjw8dO3Y832VJEzBz5kxmzpzJzTffzFtvvYXFol8PUr/S0lKys7NZvnw5cXFxNR+DBw8G7LNpcXFxvPrqqyZXKo6iX79+gH0vs187sYdZWFjYea1JHNuJ/0yuqqqqc+7EWHV19XmtSZqe8PBwoqKiWL9+fZ1zGzZswDCMmvfOjkDvvJqZ0aNH4+Xlxdy5c2v9wkpMTGTNmjWMHTsWNzc3EysURzRr1iyeeOIJbrrpJubPn69QJqfl7e3NkiVL6ny89tprAFx66aUsWbJE7fOlxujRo/Hz8+Odd96pNZNaVFTE22+/TUBAQL1d06Tl6ty5MwDz58+vNV5UVMTChQvx9vamS5cuJlQmTc348eM5dOgQixcvrjX+/PPP4+Liwrhx40yqrC4nwzAMs4uQs+vFF19k6tSpDBw4kAkTJpCbm8ucOXNwdXUlMTGxZlpXBODll1/m3nvvpU2bNsyaNQtnZ+da58PCwhgxYoRJ1UlTkpycTFxcHHfffTf/+c9/zC5HHMybb77J7bffTocOHbjjjjtwcnLijTfeYO/evcyfP19d9qSWlJQUevbsybFjxxg/fjyDBg3i2LFjvPHGGxw4cIBnn32Wv/71r2aXKSZ59913SUlJAeDf//43lZWVNa+HVq1ace+999Zce+zYMXr37k1mZiZTp04lLi6OpUuXsnz5ch577DFmzZplys9QL5M3uJZz5L333jN69OhheHh4GIGBgca4ceMcamdzcRy33HKLAZzyY+jQoWaXKE3EoUOHDMC4++67zS5FHNSnn35qDBw40PD29ja8vLyMwYMHGytWrDC7LHFQqampxl/+8hcjISHB8PT0NHx8fIxBgwYZCxYsMLs0MdnQoUNP+b4lJiamzvXp6enGpEmTjJCQEMPd3d3o0qWL8eqrr57/wn+DZsxERERERERMphtJRERERERETKZgJiIiIiIiYjIFMxEREREREZMpmImIiIiIiJhMwUxERERERMRkCmYiIiIiIiImUzATERERERExmYKZiIiIiIiIyRTMRERERERETKZgJiIiIiIiYjIFMxERafZSUlJ48MEH6dq1K0FBQbi6uhISEsLIkSNZs2ZNo55r5syZODs7s3v37nNU7ZnJyMjA09OTe+65x+xSRETkDDgZhmGYXYSIiMi5sm/fPgYPHkxOTg69evUiPj4ei8VCTk4Omzdv5uGHH+Zvf/tbg54rKyuLdu3accUVV7BgwYJzXHnjTZkyhVdeeYWdO3eSkJBgdjkiItIICmYiItKs3Xnnnbz++uvMmzePO++8s9a5iooK8vPzCQsLa9BzTZkyhblz57J161YuvPDCc1Hu75KWlkabNm247rrr+Oijj8wuR0REGkFLGUVEpFk7cOAAAElJSZSUlNQ65+7u3uBQVlpayttvv023bt0cMpQBREZGMnz4cJYsWUJWVpbZ5YiISCMomImISLM2ZcoU3NzceP755wkODmbYsGH83//9H5mZmY16noULF1JQUMBNN91U51xycjJOTk4MGzaMsrIyHnroIWJiYnB3d6ddu3b84x//4NcLVH75mJKSEqZNm0Z0dDSenp707NmTZcuW1freffv2xdvbm7CwMCZPnkxZWVm9dY4fP56qqirmz5/fqJ9PRETMpWAmIiLNWmVlJQEBAUyYMIFx48Zx4MABHnnkERISEvj8888b/DzLly8HYNiwYaf9XiNHjmTevHl06tSJ4cOHk5aWxkMPPcRjjz12ysdcfPHFvPvuu3Tv3p1+/fqxbds2rrnmGlatWsWcOXMYP348Li4ujBw5EqvVyr///W/uuOOOep/vRH2fffZZg382ERExn+4xExGRZuuVV17h3nvv5b333mP8+PE1448++ihPP/00gYGBJCcn4+vr+5vP1bp1a44ePUpRURHu7u61ziUnJxMXFwfA4MGDWbx4McHBwQAkJibSv39/3NzcyMrKwsfHp85jhg0bxuLFiwkICABg/vz53HrrrbRr1468vDw++eQTBg8eDEB6ejo9evQgOzubAwcO0LZt2zq1hoSEUFRUREFBQZ1aRUTEMWnGTEREmqXNmzczefJkJkyYUCuUATz11FN06dKFvLy8BrXLz87OJjMzk9jY2NMGHYvFwuuvv14TygB69+7N5ZdfTmlpKYmJiXUe4+zszH//+9+aUAYwceJEQkJC+Pnnn7n33ntrQhlAREREzXLKU9WekJBARUUFe/fu/c2fTUREHIOCmYiINEt///vfsVqtp2yF361bNwDy8vJ+87mys7MBaoWn+sTGxtKhQ4c64yfGMjIy6n1Mu3btao1ZLBZiYmIAGDFiRJ3HxMfHn/L5AAIDAwHIyck5bb0iIuI4FMxERKTZyczMZPXq1cTGxtKlS5d6rykoKACoNbt1Kieu/a0lj1FRUfWOn1i+WFFRUedcZGRkvY/x9vY+5fkT5+p7PgA/Pz/gZN0iIuL4FMxERKTZ+emnnwDo1atXveetViubNm0CaFDre39/fwAKCwtPe52Tk1NjymzQY87kOU8EshN1i4iI41MwExGRZufE0sMTM0e/tmbNGnJzc+nRowcRERG/+XyhoaFAw5Y9OoJjx44B9iYgIiLSNCiYiYhIs3NiyeHBgwfrnKuurubBBx8E7HucNURoaCjh4eGkpKSccv8wR5KUlISHhwcJCQlmlyIiIg2kYCYiIs1O//79cXFxYe3atXzzzTc14+Xl5dx11138+OOPDB8+nIkTJzb4OQcPHkx1dTVbtmw5FyWfNQcOHODo0aP07dtXrfJFRJoQBTMREWl2IiIimDZtGjabjUsvvZTLLruMsWPHEhcXx1tvvcWgQYNYtGhRo+7fuuKKKwBYvXr1uSr7rPj2228BGDVqlLmFiIhIoyiYiYhIszR79mzmzp1Lp06d+O6771i5ciXx8fHMmzeP1atX/2br+18bO3Ys/v7+fPDBB+eo4rPjgw8+wNXVlUmTJpldioiINIKTYRiG2UWIiIg0Bffffz8vvPACP/74Iz179jS7nDqOHDlCTEwM1113HR999JHZ5YiISCNoxkxERKSBpk+fjo+PD88884zZpdTrX//6FxaLhVmzZpldioiINJKCmYiISAOFhoby4IMPsmjRInbv3m12ObVkZGQwb9487rzzTnVjFBFpgrSUUURERERExGSaMRMRERERETGZgpmIiIiIiIjJFMxERERERERMpmAmIiIiIiJiMgUzERERERERkymYiYiIiIiImEzBTERERERExGQKZiIiIiIiIiZTMBMRERERETGZgpmIiIiIiIjJFMxERERERERM9v9ZD6SBveW5QwAAAABJRU5ErkJggg==\n",
"application/papermill.record/text/plain": ""
},
"metadata": {
"scrapbook": {
"mime_prefix": "application/papermill.record/",
"name": "displacement_LOD_squeezed_state"
}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAANOCAYAAAB6Kh+lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC84ElEQVR4nOzdd3hUZcKG8XsSUimhgxRpKogoSBVFQMWGvWBBRFRU1t4VV0Usi+tasRcUEARBVl0LIiqIigiIYgNEmvSikAAJqfP9MUs+s7QEAmeS3L/ryuXLOe+ceQbCmIdz5j2hcDgcRpIkSZIUmJigA0iSJElSWWcxkyRJkqSAWcwkSZIkKWAWM0mSJEkKmMVMkiRJkgJmMZMkSZKkgFnMJEmSJClgFjNJkiRJCli5oAOURnl5eaxYsYKKFSsSCoWCjiNJkiQpIOFwmI0bN1KnTh1iYnZ8XsxithesWLGC+vXrBx1DkiRJUpRYunQp9erV2+F+i9leULFiRSDym1+pUqWA00iSJEkKSlpaGvXr18/vCDtiMdsLtl6+WKlSJYuZJEmSpF1+xMnFPyRJkiQpYBYzSZIkSQqYxUySJEmSAmYxkyRJkqSAWcwkSZIkKWAWM0mSJEkKmMvlR5Hs7Gxyc3ODjqEyIjY2lri4uKBjSJIkCYtZVEhLS2PdunVkZmYGHUVlTEJCAtWrV/d+e5IkSQGzmAUsLS2N5cuXU6FCBapXr05cXNwubz4n7alwOEx2djapqaksX74cwHImSZIUIItZwNatW0eFChWoV6+ehUz7VFJSEhUrVmTZsmWsW7fOYiZJkhQgF/8IUHZ2NpmZmaSkpFjKFIhQKERKSgqZmZlkZ2cHHUeSJKnMspgFaOtCHy7AoCBt/f5z4RlJkqTgWMyigGfLFCS//yRJkoJnMZMkSZKkgFnMJEmSJClgFjNJkiRJCpjFTNoDc+bMoUePHtSoUYOkpCQOPfRQnnjiCfLy8nbreFOnTqV79+5UrVqVChUq0L59e4YNG1bMqSVJkhRtLGbSbpo2bRpt27blrbfeonHjxpx++umsW7eOm2++mfPOO49wOFyk47399tt07tyZjz76iMMOO4yTTjqJ+fPn06dPH26++ea99CokSZIUDSxm0m7IycmhV69epKen8/jjj/PNN9/w5ptvMn/+fDp27Mi4ceMYOnRooY+3fv16Lr30UnJzc3nrrbeYPHkyb731FnPnzuWAAw7giSeeYNKkSXvvBUmSJClQFjNpN7z99tssWLCAli1bctNNN+Vvr1ChAs8++ywAjz/+eKGP98orr5CamsoZZ5zB2Wefnb+9Vq1aPPLII0U+niRJkkoWi5mizpw5c7j44otp0qQJiYmJ1KhRg1atWnHjjTeycuXKoOMB8P777wNw7rnnbrPv8MMPp3Hjxvz0008sXrx4j493yimnkJiYyCeffMKWLVt2P7QkSZKilsVMUWXWrFm0adOGkSNHUqNGDc466yw6dOhAVlYWTz31FPPmzQs6IgCzZ88GoHXr1tvdv3X71nm78sMPP+zwePHx8bRo0YItW7ZEzeuXJElS8SoXdABtXzgcJiM7N+gYRZIUF0soFNqjYwwePJiMjAzGjRtX4JI+iJxJq1y5cqGOM3nyZI455pgiPXeXLl2YPHlyoeb+/vvvANSrV2+7+7du3zpvZ9LS0tiwYcMujzdz5kx+//13WrZsWaiMkiRJKjmispj9+uuvjBgxgo8//pgFCxawZcsWmjRpQo8ePbjxxhspX758oY7z7bff8ve//52vv/6avLw82rRpw/3330/nzp23mZuVlcXDDz/MsGHDWLZsGbVr1+aCCy5gwIABJCcnF/dL3KWM7Fya3zthnz/vnvjl/hNJjt+zb6k1a9YAcOyxx26z7+CDDy70cWrXrs0ll1xSpOdu1qxZoedu2rQJYIffG1u/R7fOK8yxiut4kiRJKnmispi9+uqrPPPMM5x22mn07NmT+Ph4Jk2axN13382YMWOYNm0aSUlJOz3GjBkz6NKlCzVr1uSee+4hISGBl156ieOOO47x48fTrVu3AvN79uzJuHHjuPjii+ncuTOzZ8/mscceY+bMmUycOJGYGK/63BfatGnD+PHj6d27N3fffTdt27bdrd/7Zs2aFWlVxN21ozOERVkqvzBzi7r0viRJkkqWqCxm5557LnfeeWeBy9b69evHgQceyEMPPcSrr77KNddcs9NjXH/99cTExDBlyhT2339/AHr37s0hhxzC1Vdfzbx58/J/qJ4wYQLjxo3juuuuY/DgwfnHaNiwIbfeeitvvPEGvXr1Kv4XuhNJcbH8cv+J+/Q591RSXOweH+O2227jyy+/5L333uO9994jJSWFDh06cOqpp9KnTx8qVqxYDEn3XIUKFVi/fj2bN2/e7v709PT8ebvy19eUnp5OpUqV9uh4kiRJKnmispi1bdt2u9vPO+88HnroIX788cedPn7hwoVMmzaNPn365JcygJSUFPr27cvAgQP55ptvOOKIIwAYOXIkALfcckuB41x99dXcc889jBgxYp8Xs1AotMeXBZZElSpV4rPPPuOrr77ivffeY/LkyXz66ad8/PHHDBo0iC+++IImTZrs8jhz587l4YcfLtJzN2vWjDvvvLNQc/fff3/Wr1/PsmXLOOyww7bZv2zZsvx5u1KpUiVSUlJITU1l2bJlNG/efI+OJ0mSpJKnRP3kv3z5cgBq1qy503nTp08H4Mgjj9xm39Zt06dPzy9m06dPp06dOjRo0KDA3KSkJFq1apV/PO0boVCITp060alTJwDWrl3LDTfcwKhRo7jrrrt48803d3mMVatWMWzYsCI9b5cuXQpdzFq2bMns2bOZNWsW3bt332b/rFmzALZb2nZ0vClTpjBr1qxtill2djY//fQTCQkJNG3atFDHkyRJUslSYj44lZuby/3330+5cuW46KKLdjp3a4Hb3gp3W7dtPQOxdf7OVsNbv359/qVk25OZmUlaWlqBLxWfGjVqcN999wHs8mzpVl27diUcDhfpq7ArMkLk3mIAb7311jb7vvvuOxYuXEjz5s1p1KjRHh/v/fffZ8uWLRx33HEkJiYWOqMkSZJKjhJTzK6//nqmTZvGfffdt8uzBltLVEJCwjb7tv5g+9eilZ6evt25O5r/vwYNGkRKSkr+V/369Xf+YrRDL7zwAosWLdpm+/jx44HouZTvrLPOolGjRsyePZsnnngif/vmzZvzP/948803b/O44447jmbNmm1zFrZv375UqlSJd999l3//+9/529esWcPtt9++w+NJkiSpdCgRxezuu+/mueeeo2/fvtx11127nL91yfHMzMxt9mVkZBSYs3W8vbk7mv+/+vfvT2pqav7X0qVLd5lR2/fCCy/QuHFjDjnkEM4991wuuOACDj/8cG688UaSkpIYMGBA0BEBiIuLY8SIESQlJXHzzTdzxBFHcP7553PggQfy9ddfc+aZZ3LppZdu87gFCxYwb968bYp+1apVefXVV4mJieHcc8/lmGOOoUePHjRt2pTffvuN66+/nuOOO25fvTxJkqSSa+kM+PEtyCtZ9wSO+mJ233338dBDD9G7d29efPHFQt3AuG7dukDByxW32t5ljnXr1t3u3K3zq1SpstNilpCQQKVKlQp8afc88MADXHbZZYRCIT799FPee+890tPTufLKK/nhhx/o2LFj0BHzHXnkkcyYMYNzzjmH3377jXfffZcqVarw6KOP8tZbbxV5mf9zzjmHKVOmcOKJJ/L999/z4Ycf0qRJE1599VWeeuqpvfQqJEmSSpFwGCbeC+MuhymPBp2mSKJ68Y+BAwcycOBAevXqxWuvvVboH3TbtWsHwNSpU7niiisK7Js6dWqBOVvHI0aMYMmSJQUWAMnIyOD777/n6KOP3tOXokI67bTTOO2004KOUWiHHHLIdj8XtiOLFy/e6f6jjjoq/7JNSZIkFdHCyfD7VIhNgNYXB52mSKL2jNn999/Pfffdx0UXXcTQoUN3WMpWrlzJ3LlzC1wa1qRJE9q3b8/YsWMLXFaYlpbGkCFDaNKkSf6KjBC5uTTAY489VuDYzz//PBkZGft8qXxJkiRJRRQOw+RBkXHbS6FSnWDzFFFUnjF79tlnGTBgAPvvvz/HH388o0aNKrC/Vq1aHH/88UDk813Dhg1j0qRJdO3aNX/O4MGD6dq1K0cffTTXX3898fHxvPjii6xcuZIPP/ywwCWRJ598MmeeeSZPP/00qampdO7cmdmzZ/Pcc8/RtWvXXa4CKUmSJClgCz6Fpd9AuUTodFPQaYosKovZjBkzAPj999/p06fPNvu7dOmSX8x2pEOHDkyZMoW///3v3HfffeTm5tK2bVs++eSTAgVuq9GjRzNo0CCGDx/O6NGjqVWrFjfffDMDBgwo8meFJEmSJO1D4TBM+kdk3K4vVKwdbJ7dEAqHw+GgQ5Q2aWlppKSkkJqautOFQLZs2cKiRYto1KiR96dSYPw+lCRJJd6vE+CN8yAuGW6YDRVqBp0oX2G7gaeCJEmSJJVc4TBMeigybn9FVJWyorCYSZIkSSq55n0IK2dDfAU48oag0+w2i5kkSZKkkikvDyb9dyXG9ldC+WrB5tkDFjNJkiRJJdPc92H1jxBfEY68Lug0e8RiJkmSJKnkycv7//uWHfE3SK4abJ49ZDGTJEmSVPL88g6s+QUSUqDj1UGn2WMWM0mSJEklS14uTH44Mu54DSRVCTZPMbCYSZIkSSpZfvo3rJsHiSlwRL+g0xQLi5kkSZKkkiM3Bz7/79myI6+LlLNSwGIm7YE5c+bQo0cPatSoQVJSEoceeihPPPEEeXl5RTrODz/8wLXXXssRRxxBnTp1SEhIICUlhY4dO/LMM8+Qk5Ozl16BJElSCfPTW/DHb5HLFzuUjrNlAOWCDiCVVNOmTeO4444jPT2d9u3b07BhQ6ZMmcLNN9/MV199xdixYwmFQoU61pQpU3j22Wdp0KABzZs3p0aNGqxdu5avvvqKadOm8fbbb/PRRx8RFxe3l1+VJElSFMvN+f/Plh11AyRUDDZPMbKYSbshJyeHXr16kZ6ezuOPP85NN90EwKZNmzjhhBMYN24cQ4cO5dJLLy3U8bp370737t1p3Lhxge2rV6+mW7dufPbZZwwZMoR+/UrPvwpJkiQV2Q+jYf0iSK4O7a4IOk2x8lJGaTe8/fbbLFiwgJYtW+aXMoAKFSrw7LPPAvD4448X+niNGzfeppQB1KpVizvvvBOAzz77bA9TS5IklWC52fD5PyPjo26AhArB5ilmFjNFnTlz5nDxxRfTpEkTEhMTqVGjBq1ateLGG29k5cqVQccD4P333wfg3HPP3Wbf4YcfTuPGjfnpp59YvHjxHj9XbGwsAPHx8Xt8LEmSpBLr+5Gw4XcoXxPa9Q06TbGzmCmqzJo1izZt2jBy5Ehq1KjBWWedRYcOHcjKyuKpp55i3rx5QUcEYPbs2QC0bt16u/u3bt86b3etX7+exx57DICTTz55j44lSZJUYuVkwZRHI+NON0F8crB59gI/Y6aoMnjwYDIyMhg3bhxnn312gX1z5syhcuXKhTrO5MmTOeaYY4r03F26dGHy5MmFmvv7778DUK9eve3u37p967zCmj9/Pg899BB5eXmsXr2aqVOnsmnTJq666ip69uxZpGNJkiSVGt8Nh9SlUKE2tC3cZ/hLGotZtAqHITs96BRFE5cMhVyFcEfWrFkDwLHHHrvNvoMPPrjQx6lduzaXXHJJkZ67WbNmhZ67adMmAJKTt/+vNeXLly8wr7BWr17NsGHDCmy79tpreeihhwq9wqMkSVKpkp3x/2fLjr4F4pKCzbOXWMyiVXY6/KNO0CmK5q4VEF9+jw7Rpk0bxo8fT+/evbn77rtp27YtMTFFv+K2WbNmDB06dI+yFMaOylI4HN6t43Xq1IlwOExubi6///47b7/9NgMHDmTChAl8/PHHNGzYcA/SSpIklUAzX4WNKyGlPrQp2j+8lyR+xkxR5bbbbqNr16689957dOjQgapVq3LiiSfy9NNPs3HjxqDj5atQIbIK0ObNm7e7Pz09vcC8ooqNjaVRo0bcfPPNDB06lPnz53PdddftXlhJkqSSKnMTfPHfla673A7lEoLNsxd5xixaxSVHzkCVJHF7/iHMSpUq8dlnn/HVV1/x3nvvMXnyZD799FM+/vhjBg0axBdffEGTJk12eZy5c+fy8MMPF+m5mzVrlr80/a7sv//+rF+/nmXLlnHYYYdts3/ZsmX58/bUmWeeSYUKFRg/fjxZWVmuzihJksqO6S9C+jqo2hhaXhh0mr3KYhatQqE9viywpAqFQnTq1IlOnToBsHbtWm644QZGjRrFXXfdxZtvvrnLY6xatWqbz2rtSpcuXQpdzFq2bMns2bOZNWsW3bt332b/rFmzALZb2ooqFApRtWpVfv/9d9avX0+tWrX2+JiSJElRL2MDfPVUZNy1P8TGBRpnb/NSRkW9GjVqcN999wHw448/FuoxXbt2JRwOF+mrsCsyApxyyikAvPXWW9vs++6771i4cCHNmzenUaNGhT7mjixcuJClS5dSqVIlqlevvsfHkyRJKhGmPQdbUqFGM2hxTtBp9jqLmaLKCy+8wKJFi7bZPn78eKB4Lg0sDmeddRaNGjVi9uzZPPHEE/nbN2/ezDXXXAPAzTffvM3jjjvuOJo1a8b06dMLbH/kkUdYuHDhNvPnzZtHz549CYfD9O7dO/9m05IkSaXa5j/g6+ci42PugpjS/zNQKLy7y8dph9LS0khJSSE1NZVKlSrtcN6WLVtYtGgRjRo1IjExcR8mjF6tWrVi9uzZNG/enIMPPphy5coxb948vv/+e5KSkvj000/p2LFj0DEBmDp1Kt26dSMjI4MOHTrQoEEDvvjiC1auXMmZZ57JuHHjtllRsmHDhixZsoRJkybRtWvXAtuXLl1Ky5YtOeCAAwiHwyxZsoRvv/2WvLw8OnfuzAcffLDbi4nsjN+HkiQp6ky8N3IZY+3D4MrPYTdW6Y4Whe0GJfcVqlR64IEHuOyyywiFQnz66ae89957pKenc+WVV/LDDz9ETSkDOPLII5kxYwbnnHMOv/32G++++y5VqlTh0Ucf5a233irSMv8PPfQQF1xwAZs3b2bChAm8++67/P777xx//PEMHTqUSZMm7ZVSJkmSFHU2roZvXoqMj727RJeyovCM2V7gGTOVJH4fSpKkqPLh7ZHVGOu1g8snRhbFK8E8YyZJkiSpZNmwFL59LTI+9u4SX8qKwmImSZIkKTpM+RfkZkHDo6FRl6DT7FMWM0mSJEnB+2MBfDciMi5jZ8vAYiZJkiQpGnz+CIRz4YDjYf8jgk6zz1nMJEmSJAVrzVz44c3I+Ni/B5slIBYzSZIkScGaPAgIQ7NToc7hQacJhMVMkiRJUnBW/gC/vAOE4Ji7gk4TGIuZJEmSpOBM+kfkvy3OgVqHBJslQBYzSZIkScFYNhN+HQ+hGOjaP+g0gbKYSZIkSQrGZw9G/tuyJ1Q/INgsAbOYSZIkSdr3Fn8JCydBTBx0uT3oNIGzmEmSJEnat8Jh+OyhyLh1b6jSINg8UcBiJkmSJGnfWvAZ/D4VYhOg861Bp4kKFjNJkiRJ+044/P+fLWvXFyrVCTZPlLCYKSpNnDiRM888k9q1axMfH0+1atVo3rw5F110ES+//DJZWVkF5jds2JBQKERcXBy//fbbdo85dOhQQqEQ/fr12+72v37Fx8dTp04dzj77bKZMmbLXXueeeP/997nrrrvo1q0bKSkphEIhTjrppKBjSZIk7dy88bBiFsQlQ6ebgk4TNcoFHUD6XwMGDOD+++8HoEWLFhx11FHExsYyb948Ro0axRtvvMFpp51G7dq1t3lsTk4ODzzwAMOGDSvy8zZp0oROnToBsHnzZr7//nvefvtt3nnnHV555RUuu+yyPXthxaxXr16kpqYGHUOSJKnw8vL+/2xZh35QoUaweaKIxUxRZebMmdx///3Ex8fz9ttv07179wL7ly9fzssvv0xCQsJ2H5+UlMTIkSO5++67OfDAA4v03J06dWLo0KH5v87Ly+P222/nscce4+abb+b888+nfPnyRX5Ne8s555zDwQcfTLt27di4cSOnnXZa0JEkSZJ27qdxsOZnSEiBI68LOk1U8VJGRZW3334bgPPOO2+bUgZQt25d7rvvPqpUqbLdx//tb38jNzc3/4zbnoiJieGhhx4iJSWF1NRUpk2btsfHLE5Dhgzh1ltvpUuXLlSoUCHoOJIkSTuXmw2T/rsS41HXQ3LVYPNEGYuZosratWsBqFFj905rX3PNNdSsWZNRo0Yxb968Pc6TkJDAAQdEbna4Zs2aPT6eJElSmTVrOKxfBOVrRC5jVAEWM0WVevXqATBu3Lj8klYUycnJ3H777cV21gxg48aNANSsWbNYjidJklTmZGfA549Exp1vgwSv9vlfFrMot3nz5h1+bdmypdBzMzIydntuenr6Duemp6cX6+u96KKLSExM5Pfff+eAAw7gkksu4ZVXXuHnn38mHA4X6hh/+9vfqFWrFqNHj2bOnDl7lGf+/PksWLCAypUrc8QRRxT6cYsXL95mpcddfTVs2HCPskqSJEWt6S/BplWQsj+06RN0mqjk4h9RbmefHerevTsffPBB/q9r1qy5w6LUpUsXJk+enP/rhg0bsm7duu3Obdu2LTNmzMj/dfPmzVmyZMl25zZv3pyff/55Zy+hSJo0acK7777LpZdeyooVKxg+fDjDhw8HIq/vkksu4a677qJy5co7PEZycjJ33HEHN998M/fffz+jRo0qco7Nmzczc+ZMrrsu8qHU559/vkgLf1SoUIFLLrmkSM9ZvXr1Is2XJEkqEbakwpdPRMZd74Ry21/ErayzmCnqnHDCCSxcuJD//Oc/TJw4kW+++YaffvqJNWvW8K9//Yu3336bqVOn7vRzaP369eORRx5hzJgx3HPPPTRv3nyXzzts2LBtltlPSEhg/PjxHH/88UV6DdWrVy+wwqMkSVKZNfUZyFgP1ZtCywuCThO1LGZRbtOmTTvcFxsbW+DXO1ucIiam4FWrixcvLvTcX375ZYeXEYZCoR0eZ08kJCTQo0cPevToAUQWBRk6dCj33Xcfv/32G3fddRcvv/zyDh+flJTEnXfeyY033sjAgQN58803d/mcf72P2R9//MGUKVNIS0ujT58+fPPNN/mff5MkSVIhbVoLXz8bGR97N8TE7nx+GWYxi3JFuXxub81NTk4u9Ny9pUaNGtx2220kJSVx3XXXFbiEc0euuuoqHnnkEcaOHcs999yzy/n/ex+zDRs2cPLJJzNt2jSuuuqqQj3nVuvWrePWW28t9HyInGV79NFHi/QYSZKkqPbl45C9GeocDgd7z9WdsZipROnatSvADj8f91eJiYnceeedXH/99QwcOJBTTjmlSM9VuXJl3njjDQ4++GA+/PBDpkyZQufOnQv12E2bNm1zWeSuNGjQwGImSZJKjw1LYcYrkfFx98JeutKqtHBVRkWVXa28uGDBAgDq1KlTqONdeeWV1K1bl3HjxvHDDz8UOU+jRo3o1y9yn40HH3yw0I9r2LAh4XC4SF87u7xUkiSpxPn8YcjNgoZHQ+Njgk4T9Sxmiir33HMPt99+O4sWLdpm3/z587nlllsAOPvsswt1vISEBPr37084HOaFF17YrUx33nknSUlJTJw4scBqlZIkSdqBdfPh+zci4+MGeLasECxmiiqbNm3iX//6F02aNOHggw/m7LPP5vzzz6djx440a9aMBQsW0KZNGwYMGFDoY/bt25d69eptc3+2wqpdu3b+WbN//OMfu3WMveGBBx7giCOO4IgjjuDqq68GYNq0afnbjjjiCFauXBlwSkmSVCZ99iCE86Bpd6jfLug0JYKfMVNUufvuu2nTpg0TJkxg9uzZfP7556SlpVG5cmW6dOnCueeeS9++fYmPjy/0MRMSErjrrrvyy8vuuOOOO3jxxRd59913+emnn2jRosVuH6u4LFiwgG+++abAttTU1ALbMjMz93UsSZJU1q34Hn55BwhFVmJUoYTCu/pQj4osLS2NlJQUUlNTqVSp0g7nbdmyhUWLFtGoUSMSExP3YULp//l9KEmSitWIc+C3T+DQ8+CcHd/eqKwobDfwUkZJkiRJxWPxV5FSFlMOjukfdJoSxWImSZIkac+Fw/Dp/ZFx695QtXGweUoYi5kkSZKkPTf/Y1g6DcolQefbg05T4ljMJEmSJO2ZvDz49IHIuMOVUGm/YPOUQBYzSZIkSXvm53/D6h8hoRIcdWPQaUoki5kkSZKk3ZebDZMeioyPvB6Sqwabp4SymEUB71igIPn9J0mS9sj3I+HPhZBcHY7oF3SaEstiFqCYmMhvf25ubsBJVJZt/f7b+v0oSZJUaNkZMPmfkXHnWyGhYrB5SjB/EgtQXFwcsbGxZGRkBB1FZVhGRgaxsbHExcUFHUWSJJU001+GjSugUj1oe1nQaUo0i1mAQqEQycnJpKametZMgcjNzSU1NZXk5GRCoVDQcSRJUkmSsQG+eCwyPqY/lEsINE5JVy7oAGVdzZo1Wbx4MUuWLKFq1aokJCT4A7L2unA4TGZmJn/++Sd5eXnUrFkz6EiSJKmk+eop2LIBajSDlhcGnabEs5gFLD4+nnr16rFu3TpWrlwZdByVMeXLl6d27drEx8cHHUWSJJUkaSth2vOR8XH3QkxssHlKAYtZFEhOTmb//fcnJyeHnJycoOOojChXrhzlyvkWIEmSdsPn/4ScDKjfAZp2DzpNqeBPZVHEH5QlSZIU9dbNh1nDI+NuA8GP4RQLF/+QJEmSVHifPQDhXDjoJGjQMeg0pYbFTJIkSVLhLP8WfnkXCEU+W6ZiYzGTJEmStGvhMEwcEBm3vBBqHRJsnlImaovZoEGD6NGjB40bNyYUCtGwYcMiPX7y5MmEQqGdfn311VeFmt+qVavifXGSJElSSbPgU1j8BcTGR+5bpmIVtStN3HXXXVStWpXWrVuzYcOGIj/+4IMP5vXXX99me2ZmJldeeSXVq1enffv22+y/8sorOfroowtsq1q1apGfX5IkSSo18vLgk/si43ZXQOX9A41TGkVtMVuwYAGNGzcGoEWLFmzatKlIj69Vqxa9evXaZvuoUaPIy8ujd+/exMXFbbO/Y8eO232cJEmSVGb9/G9Y9SMkVIKjbwk6TakUtZcybi1lxe2VV14BoG/fvjuck56ezpYtW/bK80uSJEklSk5WZCVGgCOvh/LVgs1TSkVtMdsbFi1axKRJk+jUqRNNmzbd7pwbbriB8uXLk5SURKNGjXjggQfIzs7ex0klSZKkKPHtUFi/GMrXhI5XB52m1IraSxn3hldffZVwOLzds2VxcXGceuqpdO/enXr16rFq1SpGjx7Nvffey1dffcUHH3xAbGzsdo+bmZlJZmZm/q/T0tL22muQJEmS9pnMTTDlkci46x0QXz7YPKVYKBwOh4MOsStbP2O2ePHi3T5Gbm4uDRs2JC0tjZUrV5KcnFyox/Xt25chQ4YwcuRIevbsud059913HwMHDtxme2pqKpUqVdrtzJIkSVKgJv8TJv8DqjaGa6ZD7LZrNGjn0tLSSElJ2WU3KDOXMk6YMIFly5Zx4YUXFrqUAdxzzz0AfPDBBzuc079/f1JTU/O/li5dusd5JUmSpEBtXgdTB0fGx95tKdvLysyljEOGDAF2vujH9tSvX5/Y2FjWrl27wzkJCQkkJCTsUT5JkiQpqkx5FLI2wX6toPlZQacp9crEGbM1a9bw3nvvcdhhh9G2bdsiPXbhwoXk5uZSu3btvZROkiRJijLrF8OMyGrmdLsPYspEbQhUqfgdXrlyJXPnziU9PX27+4cPH052dvZOz5atWrVqm225ubn07x+5q/npp59ePGElSZKkaDfpH5CXDY27QpNjgk5TJkTtpYyvv/46S5YsAWDt2rVkZWXx4IMPAlC5cmWuvfba/Ln9+/dn2LBhTJo0ia5du25zrFdffZXExMSd3ji6e/fuVKtWjU6dOlG3bl1Wr17N2LFjmT17NmeffTbnnHNO8b5ASZIkKRqt+gl+GBMZd7sv0ChlSdQWsyFDhvD5558X2LZ1IY4GDRoUKGY7M3XqVObMmUPPnj2pUqXKDuedf/75/Oc//+HZZ59l/fr1JCcn06JFC1588UX69u1LKBTa/RcjSZIklRSfDgTCcMhZUOfwoNOUGSViufySprBLYkqSJElRZfGXMPQUiCkXWR6/WpOgE5V4LpcvSZIkqfDCYfjkvsi49SWWsn3MYiZJkiQJ5rwHy2ZAXDJ0uSPoNGWOxUySJEkq63Kz//9sWcdroWKtQOOURRYzSZIkqaz7dij8uQCSq8NR1wedpkyymEmSJEllWeZGmPxwZNz1TkioGGyeMspiJkmSJJVlXw2G9HVQtQm06RN0mjLLYiZJkiSVVWkr4etnIuNu90FsXKBxyjKLmSRJklRWTR4E2elQrz0cfFrQaco0i5kkSZJUFq2dB9+9Hhmf8ACEQsHmKeMsZpIkSVJZ9Ml9EM6DZqfC/kcEnabMs5hJkiRJZc3ir2DehxCKheMGBJ1GWMwkSZKksiUchon3RMZtLoEaBwWbR4DFTJIkSSpbfnkHln8LceWhy51Bp9F/WcwkSZKksiInCz4ZGBkfdT1UrBVsHuWzmEmSJEllxbevwfpFUL4mdLw26DT6C4uZJEmSVBZsSYPP/xkZd70TEioEm0cFWMwkSZKksuCrpyD9D6h2ILTuHXQa/Q+LmSRJklTapa2Ar5+NjLvdB7FxgcbRtixmkiRJUmk36R+QkwH1j4BmpwSdRtthMZMkSZJKs9W/wPcjI+MTHoBQKNg82i6LmSRJklSafXIfhPPg4NOhfvug02gHLGaSJElSabXoC5g/AWLKwXEDgk6jnbCYSZIkSaVRXh5MvCcybtMHqh8QaBztnMVMkiRJKo1+eRtWfAfxFaDLHUGn0S5YzCRJkqTSJicTPhkYGR91A1SoGWwe7ZLFTJIkSSptpr8EG5ZAhdrQ8Zqg06gQLGaSJElSaZL+J0z5V2R87N0QXz7YPCoUi5kkSZJUmnz+T9iSCrVaQKueQadRIVnMJEmSpNLijwUw45XI+IQHISY22DwqNIuZJEmSVFpMvBfycuDAE6DJMUGnURFYzCRJkqTSYPFXMPd9CMXA8fcHnUZFZDGTJEmSSrq8PPj47si49SVQ8+Bg86jILGaSJElSSffTOFgxK3Iz6WPuCjqNdoPFTJIkSSrJsjPg0//eTLrTjd5MuoSymEmSJEkl2TcvQOpSqFQXjvBm0iWVxUySJEkqqTavgy8ej4yPuxfik4PNo91mMZMkSZJKqsmDIDMN9msJh54XdBrtAYuZJEmSVBKtnQczX4uMT3gIYvzRviTzT0+SJEkqiSYOgHAuNO0OjY4OOo32kMVMkiRJKmkWTYFfx0MoFroNDDqNioHFTJIkSSpJ8vJgwt8j47aXQY2Dgs2jYmExkyRJkkqSH96EVT9AQiXoemfQaVRMLGaSJElSSZGVDp/eHxkffTOUrx5sHhUbi5kkSZJUUnz9LGxcASn7Q4e/BZ1GxchiJkmSJJUEG1fDl09Ext0GQFxisHlUrCxmkiRJUkkw+R+QvRnqtIZDzg46jYqZxUySJEmKdmvmwKzhkfGJ//Bm0qWQf6KSJElSNAuHYcJdEM6DZqdCg45BJ9JeYDGTJEmSotn8ibDgM4iJg+PvDzqN9hKLmSRJkhStcrPh4//eTPqIflCtSbB5tNdYzCRJkqRoNfNVWPcrJFeHzrcFnUZ7kcVMkiRJikbpf8Kkf0TGx9wFiSnB5tFeZTGTJEmSotHnj8CWDVCzObS+JOg02sssZpIkSVK0WTcfZrwcGZ/4EMSWCzaP9jqLmSRJkhRtPr4b8nLgoJOgybFBp9E+YDGTJEmSoslvn8KvH0FMOTjhwaDTaB+xmEmSJEnRIjcHJvx3efx2V0D1A4PNo33GYiZJkiRFi1nDYO0cSKoCXW4POo32IYuZJEmSFA0yNsCkhyLjrv0huWqgcbRvWcwkSZKkaPDFo5D+B1Q/CNpeFnQa7WMWM0mSJClofyyAaS9Exif+A2Ljgs2jfc5iJkmSJAVt4r2Qlw1NjoMDjw86jQJgMZMkSZKCtGgKzH0fQrGRm0mrTLKYSZIkSUHJy4WP7oqM214KNQ8ONo8CYzGTJEmSgvLdCFj9IySkQNe7gk6jAFnMJEmSpCBsSYPPHoyMu94B5asFm0eBsphJkiRJQfjycdi8Bqo2gXZXBJ1GAbOYSZIkSfva+sXw9XOR8QkPQrn4QOMoeBYzSZIkaV+bOAByM6FRZ2h6ctBpFAUsZpIkSdK+tGQq/PIOhGLgxEEQCgWdSFHAYiZJkiTtK3m5MP72yLh1b6jdItg8ihoWM0mSJGlfmTUcVv13efxj7wk6jaKIxUySJEnaFzI2wGcPRMZd74Ty1QONo+hiMZMkSZL2hc//Cel/QPWm0N7l8VVQ1BazQYMG0aNHDxo3bkwoFKJhw4ZFPkbXrl0JhULb/XrnnXe2mZ+VlcX9999PkyZNSEhIoEGDBtxxxx2kp6fv+QuSJElS2bV2Hkx/KTI+6R8QGxdsHkWdckEH2JG77rqLqlWr0rp1azZs2LDbx6levTpPPPHENtvbtm27zbaePXsybtw4Lr74Yjp37szs2bN57LHHmDlzJhMnTiQmJmp7rCRJkqJVOAwf3Ql5OXDQyXBAt6ATKQpFbTFbsGABjRs3BqBFixZs2rRpt45Tvnx5evXqtct5EyZMYNy4cVx33XUMHjw4f3vDhg259dZbeeONNwp1HEmSJKmAXz+CBZ9BbDyc+FDQaRSlovYU0NZSVhzy8vJIS0sjLy9vh3NGjhwJwC233FJg+9VXX01SUhIjRowotjySJEkqI3IyYcJdkfERV0O1JsHmUdSK2mJWXJYvX06FChVISUmhfPnydO/enZkzZ24zb/r06dSpU4cGDRoU2J6UlESrVq2YPn36voosSZKk0mLa8/DnQqhQCzrfGnQaRbGovZSxODRs2JAjjzySQw89lISEBL777jsGDx7MUUcdxfjx4zn22GPz5y5fvpzmzZtv9zj16tXj66+/Jj09neTk5G32Z2ZmkpmZmf/rtLS04n8xkiRJKlk2roIp/4qMu90HCRUDjaPoVqqL2dChQwv8+uyzz6ZXr160bt2afv368euvv+bvS09PJyEhYbvHSUxMzJ+zvWI2aNAgBg4cWHzBJUmSVPJ9ej9kbYK6beCwC4JOoyhX6i9l/F9NmzblvPPOY/78+cyfPz9/e3JycoGzXn+VkZGRP2d7+vfvT2pqav7X0qVLiz+4JEmSSo5l38L3kTUMOPkRcHVv7UKpPmO2I1vvibZ27VoOPPBAAOrWrcuyZcu2O3/58uVUqVJlh8UsISFhh2fbJEmSVMbk5cH42yPjlhdCvW1v0yT9rzJZ3beeKatdu3b+tnbt2rFixQqWLFlSYG5GRgbff/897dq126cZJUmSVEL9OAaWz4S48nDcgKDTqIQoFcVs5cqVzJ07l/T09Pxt69evJysra5u5M2fOZMyYMRxyyCEFluTv2bMnAI899liB+c8//zwZGRnew0ySJEm7lrkJJv63jHW+FSrtF2welRhReynj66+/nn/2au3atWRlZfHggw8CULlyZa699tr8uf3792fYsGFMmjSJrl27AvD5559z1VVX0aNHDw444AASEhL4/vvvGTp0KHFxcbz88ssFnu/kk0/mzDPP5OmnnyY1NZXOnTsze/ZsnnvuObp27cpFF120b164JEmSSq4vHoNNq6BKI+h4TdBpVIJEbTEbMmQIn3/+eYFt99xzDwANGjQoUMy2p2nTpnTp0oWPPvqI1atXk5mZSZ06dejVqxd33nln/mfL/mr06NEMGjSI4cOHM3r0aGrVqsXNN9/MgAEDiPEDm5IkSdqZPxfC189Exic+BOVcg0CFFwqHw+GgQ5Q2aWlppKSkkJqaSqVKlYKOI0mSpH1h9EUw931ofAxc/DaEQkEnUhQobDfwNJAkSZK0pxZMipSyUCyc9LClTEVmMZMkSZL2RG4OfHRnZNz+CqjZLNg8KpEsZpIkSdKemDkE1s6FpKrQ9c6g06iEsphJkiRJu2vzOpj0UGR87N2QVCXYPCqxLGaSJEnS7vp0IGxJhdqHQps+QadRCWYxkyRJknbH8m9h1uuRcfdHISY22Dwq0SxmkiRJUlHl5cGHtwFhOOwC2P+IoBOphLOYSZIkSUX1/cjIGbP4inD8wKDTqBSwmEmSJElFkbEBPrkvMu56B1SsHWQalRIWM0mSJKkoJg+C9HVQvSl06Bd0GpUSFjNJkiSpsFb9BNNfioxP/ifExgWbR6WGxUySJEkqjHAYxt8O4TxofgY0OSboRCpFLGaSJElSYfw0DpZ8BeWS4ISHgk6jUsZiJkmSJO1K5ib4+O7I+OhboHL9YPOo1LGYSZIkSbsy5V+wcSVUaQhHXhd0GpVCFjNJkiRpZ9bNh6+fjYxP+ifEJQabR6WSxUySJEnaka0LfuRlw4EnQNOTgk6kUspiJkmSJO3I3A9gwWcQGw8nPRx0GpViFjNJkiRpe7IzYEL/yPjI66Bak2DzqFSzmEmSJEnb89VTsOF3qFQ3shKjtBdZzCRJkqT/tX4xfPlEZHzCgxBfPtA4Kv0sZpIkSdL/mvB3yNkCDY+GQ84KOo3KAIuZJEmS9Fe/fQJz34dQLHT/F4RCQSdSGWAxkyRJkrbKyYLxd0TGHfpBzYODzaMyw2ImSZIkbTXtWfjjNyhfE7reEXQalSEWM0mSJAlgw1L4/JHI+PiBkJgSbB6VKRYzSZIkCSL3LMtOh/07QssLg06jMsZiJkmSJM3/BOa8F1nw45THXPBD+5zFTJIkSWVb9hb48NbIuEM/qHVIsHlUJlnMJEmSVLZ99RSsXwQVakPXO4NOozLKYiZJkqSy689F8OXjkfGJD0FipWDzqMyymEmSJKns+uhOyNkCjTpDi3OCTqMyzGImSZKksmnuh/DrRxATB91d8EPBsphJkiSp7MlKh/H/vYH0kddCjYOCzaMyz2ImSZKksueLxyD1d0ipD51vCzqNZDGTJElSGbPuN5g6ODI+aRDElw82j4TFTJIkSWVJOBy5Z1luFhxwPDQ7NehEEmAxkyRJUlnyyzuwcBLEJkD3R1zwQ1HDYiZJkqSyIXMjfHRXZNzpJqjaONg80l9YzCRJklQ2fP5P2LgCqjSETjcGnUYqwGImSZKk0m/NHJj2fGR88r8gLinYPNL/sJhJkiSpdAuH4YNbIC8nstjHQScEnUjahsVMkiRJpdsPY2DJV1AuKbI8vhSFLGaSJEkqvTI2wMd3R8ZdboPK+wcaR9oRi5kkSZJKr0kPweY1UO1A6Hhd0GmkHbKYSZIkqXRaPgumvxwZn/IolIsPNo+0ExYzSZIklT55ufD+jUAYDj0PGncNOJC0cxYzSZIklT4zXoGVsyEhBU58KOg00i5ZzCRJklS6pK2ETx+IjLsNgAo1g80jFYLFTJIkSaXLR3dC1kao1w7aXBp0GqlQLGaSJEkqPeZPhF/egVAsnPoExPjjrkoGv1MlSZJUOmRnwAe3RMZH/A1qHxpsHqkILGaSJEkqHaY8ChuWQKW60PXOoNNIRWIxkyRJUsm3dh589VRkfPI/IaFisHmkIrKYSZIkqWQLh+H9myAvGw46GZqdGnQiqcgsZpIkSSrZZo+CJV9BXDJ0fwRCoaATSUVmMZMkSVLJlf4nfHx3ZNzlDqi8f7B5pN1kMZMkSVLJ9ckASP8DahwMHa8JOo202yxmkiRJKpmWfA2zhkfGpz4BsXHB5pH2gMVMkiRJJU9udmTBD4DDL4YGHYPNI+0hi5kkSZJKnq+fhbVzILkaHH9/0GmkPWYxkyRJUsmyfglMfjgyPuFBSK4abB6pGFjMJEmSVHKEwzD+dsjJgAadoOWFQSeSioXFTJIkSSXH3Pfh148gJg5Ofdx7lqnUsJhJkiSpZNiSBh/eFhkfdT3UaBpsHqkYWcwkSZJUMnx6P2xcCVUbQ+fbgk4jFSuLmSRJkqLf0hkw45XI+NQnIC4p2DxSMbOYSZIkKbrlZsN71wPhyGIfjbsGnUgqdhYzSZIkRbepT8OaXyCpKpzwUNBppL3CYiZJkqTo9ccC+PyfkfFJg6B8tWDzSHuJxUySJEnRKRyG92+CnC3QqAscdn7QiaS9xmImSZKk6PTDm7DocyiXGFnww3uWqRSzmEmSJCn6bP4DPuofGXe5Hao1CTaPtJdZzCRJkhR9Pr4bMv6Ems3hyOuDTiPtdVFbzAYNGkSPHj1o3LgxoVCIhg0bFunx69ev56mnnuKEE06gfv36JCUl0bRpU6688kqWLl26zfzJkycTCoW2+9WqVavieVGSJEnatYWTYfYbQAhOGwyxcUEnkva6ckEH2JG77rqLqlWr0rp1azZs2FDkx3/zzTfcfPPNHHvssVxzzTVUr16dn3/+mRdffJExY8YwdepUmjdvvs3jrrzySo4++ugC26pWrbq7L0OSJElFkZ0B790YGbfrC/XbBRpH2leitpgtWLCAxo0bA9CiRQs2bdpUpMc3a9aMefPmccABBxTYfsopp3D88cczYMAAxo4du83jOnbsSK9evXY/uCRJknbflH/B+kVQsQ4cd2/QaaR9JmqL2dZStrt2dOljt27dqFq1Kj/++OMOH5uenk5MTAyJiYl7lEGSJElFsPpn+OqpyLj7I5BYKdg80j4UtZ8x21tSU1PZuHEjNWvW3O7+G264gfLly5OUlESjRo144IEHyM7O3ukxMzMzSUtLK/AlSZKkIsjLg/dugLwcaHYqHHxa0ImkfSpqz5jtLQ8++CDZ2dlccsklBbbHxcVx6qmn0r17d+rVq8eqVasYPXo09957L1999RUffPABsbGx2z3moEGDGDhw4L6IL0mSVDrNHALLZkB8RTj5kaDTSPtcKBwOh4MOsStbP2O2ePHiPTrOmDFjuOCCC+jWrRsfffQRMTG7PmHYt29fhgwZwsiRI+nZs+d252RmZpKZmZn/67S0NOrXr09qaiqVKnkKXpIkaafSVsAz7SFrI5z8L+hwZdCJpGKTlpZGSkrKLrtBmbmU8cMPP+Tiiy/m8MMPZ+zYsYUqZQD33HMPAB988MEO5yQkJFCpUqUCX5IkSSqk8bdHSlndttDu8qDTSIEoE8Xso48+4uyzz6ZZs2Z8/PHHpKSkFPqx9evXJzY2lrVr1+7FhJIkSWXU3A9gznsQUw5Oewpitv/REam0K/XFbMKECZx11lkcdNBBfPrpp1SrVq1Ij1+4cCG5ubnUrl17LyWUJEkqo7akwge3RMYdr4XaLYLNIwWoVBSzlStXMnfuXNLT0wts//jjjznzzDM58MAD+eyzz6hevfoOj7Fq1apttuXm5tK/f38ATj/99OINLUmSVNZNvBc2roSqTaDrnUGnkQIVtasyvv766yxZsgSAtWvXkpWVxYMPPghA5cqVufbaa/Pn9u/fn2HDhjFp0iS6du0KwMyZMznjjDMIh8NcdtllfPTRR9s8x19vJN29e3eqVatGp06dqFu3LqtXr2bs2LHMnj2bs88+m3POOWcvvlpJkqQyZvGX8O3QyPj0wRCXFGgcKWhRW8yGDBnC559/XmDb1oU4GjRoUKCYbc9PP/3Eli1bALjpppu2O+evxez888/nP//5D88++yzr168nOTmZFi1a8OKLL9K3b19CodCevBxJkiRtlZ0B/7kuMm7TBxp2CjSOFA1KxHL5JU1hl8SUJEkqkyYOgK+ehIr7wTXfQGLhF2aTShqXy5ckSVL0WfE9TH06Mj7lMUuZ9F8WM0mSJO0budnwn2shnAuHnAXNTgk6kRQ1LGaSJEnaN6Y+Dat+hMTKcPIjQaeRoorFTJIkSXvfut9g8sOR8UmDoELNYPNIUcZiJkmSpL0rLw/eux5yM6HJsdDywqATSVHHYiZJkqS9a9ZQWPIVxCXDqU+CtyGStmExkyRJ0t6TtiKyPD7AsfdAlQbB5pGilMVMkiRJe0c4DB/cAplpULctdLgq6ERS1LKYSZIkae/4+W2Y9yHExMHpT0NMbNCJpKhlMZMkSVLxS/8Txt8eGR99C9RqHmweKcpZzCRJklT8JvwdNq+FGs3g6JuDTiNFPYuZJEmSitdvn8LsN4BQ5BLGcglBJ5KinsVMkiRJxSdzE7x3Y2Tc4Sqo3z7QOFJJYTGTJElS8fnsAUj9HVL2jyyPL6lQLGaSJEkqHku+hm9ejIxPewISKgSbRypBLGaSJEnac9kZ8J9rgTAc3gsO6BZ0IqlEsZhJkiRpz016CP74DSruByc8FHQaqcSxmEmSJGnPLJsJXz8bGZ/6JCRVDjKNVCJZzCRJkrT7cjLhnashnAeHnQ9NTwo6kVQiWcwkSZK0+z7/J6ybB+VrwkkPB51GKrEsZpIkSdo9K76DL5+MjE99HJKrBhpHKsksZpIkSSq6nCx45xoI58IhZ8HBpwWdSCrRLGaSJEkqui8fhzU/Q3I16P5o0GmkEs9iJkmSpKJZ9RNM+Vdk3P1fUL56sHmkUsBiJkmSpMLLzYZ3r4a8HGh2KhxydtCJpFLBYiZJkqTC++opWDkbEivDKY9DKBR0IqlUsJhJkiSpcNbMjSyPD3DyP6FirWDzSKWIxUySJEm7lpcL714DuVlw4ImRm0lLKjYWM0mSJO3a18/C8pmQkAKnPekljFIxs5hJkiRp59b9BpMeioxPfAgq1Qk2j1QKWcwkSZK0Y3l5kUsYc7ZAk2Ph8F5BJ5JKJYuZJEmSdmz6S7B0GsRXgNMGewmjtJdYzCRJkrR9636DT+6LjI+/HyrXDzSOVJpZzCRJkrStvFx452+QkwGNu0Lby4JOJJVqFjNJkiRt6+tnYdl0SKgEpz/jJYzSXmYxkyRJUkFr5sJnD0bGJ/7DSxilfcBiJkmSpP+XmxO5hDE3Ew48wVUYpX3EYiZJkqT/99WTsGIWJKbAaU95CaO0j1jMJEmSFLHqJ5j8cGR88iPeSFrahyxmkiRJgpwseKcf5GVD01PgsPODTiSVKRYzSZIkwRePwaofIakqnPaklzBK+5jFTJIkqaxb8T188WhkfMqjUKFmoHGksshiJkmSVJblZMLb/SAvB5qfCS3OCTqRVCZZzCRJksqyyQ/D2jlQvgac8njQaaRikZWTF3SEIrOYSZIklVXLZkaWxwc49QkoXy3QOFJxePu7ZZz29JesSt0SdJQisZhJkiSVRdkZkUsYw3lw6Hlw8GlBJ5L22GdzV3Pr2B+Yt3ojb85YGnScIrGYSZIklUWfPQh/zIcKteHkfwadRtpj0xf9yd9GzCI3L8xZh9flumMPCDpSkVjMJEmSypolX8PXz0bGpw+G5KrB5pH20C8r0rh82Awyc/I4tllNHjn3MGJiStYtHyxmkiRJZUnWZnjnb0AYWvWCg04MOpG0R5b8sZner05n45Yc2jWswrM9WxMXW/JqTslLLEmSpN03cQCsXwSV6sJJ/wg6jbRH1qRtodeQb1i3KZOD96vEK5e0Iyk+NuhYu8ViJkmSVFb89inMeDkyPv1pSEwJNo+0B1LTs+n96nSW/plBg2rJDLusHSlJcUHH2m0WM0mSpLIgYz28e21k3O4KOOC4YPNIeyA9K4fLhs1g7qqN1KyYwIjLO1CzYmLQsfaIxUySJKks+OBW2LgCqh0Ax98fdBppt2Xl5PG3EbP4dsl6KiWWY/jl7alfNTnoWHvMYiZJklTa/TQOfnoLQrFw1ksQX/J/iFXZlJcX5taxs/n817UkxsXw2qXtaFa7UtCxioXFTJIkqTRLWwnv3xwZH30L1GsTbB5pN4XDYQa+9zP/mb2CcjEhXujVhjYNSs+tHixmkiRJpVU4DO9eA1s2wH6toMvtQSeSdttTn85n2NdLCIXgsfNa0rVpzaAjFSuLmSRJUmk181VY8CnEJsDZL0FsyV2xTmXbsKmLefKT+QDcf/ohnNGqbsCJip/FTJIkqTT6YwF8fHdk3O0+qNE00DjS7nr3++UM+M/PANzU7SAu7tgw2EB7icVMkiSptMnNgbevgux0aNQZOvQLOpG0WybNXcMtY2YD0OfIhlx/3AEBJ9p7LGaSJEmlzVdPwLIZkFAJzngOYvyRTyXPtIV/0G/Et+TkhTmzVR3uPbU5oVAo6Fh7jX9LJUmSSpOVs2Hyw5HxyY9A5frB5pF2ww/LNtB32Ewyc/LodnBN/tWjJTExpbeUgcVMkiSp9MjeAv++EvJy4ODToOUFQSeSiuzX1Rvp/ep0NmXm0LFxNZ7p2Zq42NJfW0r/K5QkSSorPnsA1s6F8jXh1CehFF/2pdLp9z/S6fXKN2xIz6ZV/cq8fElbEuNig461T+yTYvbLL7/si6eRJEkquxZ9AV8/Gxmf/jSUrx5sHqmIVqVu4aIh01izMZOmtSoy9NJ2VEgoF3SsfWavFrNvv/2Wc845h5YtW+7Np5EkSSrbtqTBO1cDYWjdG5qeFHQiqUj+3JxFryHfsPTPDBpUS+b1y9tTOTk+6Fj7VJEraEZGBtOmTWPNmjXUrFmTI444gqSkpAJzvvzySx588EEmTpxIOBwmOTm52AJLkiTpf3x0J6T+DpUbwIn/CDqNVCRpW7K55NXp/LZmE/ulJDLi8g7UrJQYdKx9rkhnzIYOHUrdunXp1q0bPXv2pFu3btSvX5+xY8cCsGLFCk477TS6dOnCxx9/TGJiIjfddBMLFy7cK+ElSZLKvDnvw/cjgRCc9QIkVAw6kVRoGVm59B06kx+Xp1K1fDyvX96B+lXL5kmdQp8x++KLL7j88ssJh8OkpKRwwAEHsHHjRhYsWMBFF11E1apV6dOnD8uXLychIYF+/fpx5513UqtWrb2ZX5IkqezauAr+c11kfNT10ODIYPNIRZCVk8ffRn7L9MV/UjGhHMMva88BNSsEHSswhS5mTz75JOFwmFtvvZUHH3yQ+PjINZ/z58/nnHPO4bTTTmPLli0cccQRvPHGGzRs2HBvZZYkSVJeXuRzZRl/Qu1D4Zi/B51IKrTcvDA3vfk9k+etJTEuhlcvbUeLuilBxwpUKBwOhwszsW7dulSoUIF58+Zts+/zzz/nmGOOISUlhSVLllCpUqViD1qSpKWlkZKSQmpqapn/vZAkSXvJtBfgozugXCJcNQVqNA06kVQo4XCYO8f9yJszlxIXG+KVS9rR5aAaQcfaawrbDQr9GbN169bRqlWr7e5r164dAJ07d7aISJIk7W2rf4GJ90bGJzxoKVOJEQ6HefCDObw5cykxIRh8weGlupQVRaGLWXZ2NuXLl9/uvq2rLlarVq14UkmSJGn7cjLh31dAbiYccDy06xt0IqnQBn/6G0O+XATAP885jJMP3S/gRNFjn9xgWpIkScXk0/th9U+QXA3OeBZCoaATSYXy6peLeOKTXwG499Tm9GhbP+BE0aVI9zH78ssvueyyy4q8PxQKMWTIkKKnkyRJ0v9bOBm+fiYyPuNZqOjq1yoZxsxYyv3v/wLATd0O4rJOjQJOFH0KvfhHTMzun1wLhULk5uYW6TGDBg1i1qxZfPvttyxatIgGDRqwePHiIj/3t99+y9///ne+/vpr8vLyaNOmDffffz+dO3feZm5WVhYPP/www4YNY9myZdSuXZsLLriAAQMGFOkm2S7+IUmSil36n/D8UbBxBbS5FE57MuhEUqG8+/1ybnzze8Jh6NupEX8/5WBCZehMb2G7QaHPmL322mvFEqyw7rrrLqpWrUrr1q3ZsGHDbh1jxowZdOnShZo1a3LPPfeQkJDASy+9xHHHHcf48ePp1q1bgfk9e/Zk3LhxXHzxxXTu3JnZs2fz2GOPMXPmTCZOnLhH5VSSJGm3hcPw/o2RUlbtADjxoaATSYXy0U+ruHnMbMJh6Nlh/zJXyoqi0GfM9rWFCxfSuHFjAFq0aMGmTZuKfMasY8eO/Pjjj/zyyy/sv//+AKSmpnLIIYeQnJzMvHnz8r8xJkyYwEknncR1113H4MGD84/x2GOPceutt/L666/Tq1evQj2vZ8wkSVKx+m4kvHs1xJSDvp9AncODTiTt0qR5a7hy+Eyyc8OcfXhdHu3RkpiYslfKiv2M2b62tZTtroULFzJt2jT69OmTX8oAUlJS6Nu3LwMHDuSbb77hiCOOAGDkyJEA3HLLLQWOc/XVV3PPPfcwYsSIQhezrTZv3kxsbOw222NjY0lMTCwwb0diYmJISkrarbnp6ensqHeHQqECl2cWZW5GRgZ5eXk7zPHX1TuLMnfLli07veS1KHOTk5PzS3dmZiY5OTnFMjcpKSn/zGlWVhbZ2dnFMjcxMTH/e6Uoc7Ozs8nKytrh3ISEBMqVK1fkuTk5OWRmZu5wbnx8PHFxcUWem5uby5YtW3Y4Ny4uLv/m9UWZm5eXR0ZGRrHMLVeuHAkJCUBkSd/09PRimVuUv/e+R2x/ru8RvkeU2feIPxfBu7dCVhi63kJs1YNJ/MtjfY+I8D0iut4jPp+znH6vzyIzJ4+TDqnNgJObkJER+TtQ1t4jdvb3roBwCXDIIYeEGzRoUKTHjBo1KgyEX3rppW32TZgwIQyEn3rqqfxtTZs2DdepU2e7x+rYsWO4SpUqO3yuLVu2hFNTU/O/li5dGgZ2+NW9e/cCj09OTt7h3C5duhSYW7169R3Obdu2bYG5DRo02OHc5s2bF5jbvHnzHc7939/7tm3b7nBu9erVC8zt0qXLDucmJycXmNu9e/ed/r791bnnnrvTuZs2bcqfe8kll+x07po1a/LnXn311Tudu2jRovy5t956607n/vTTT/lzBwwYsNO506dPz5/7yCOP7HTupEmT8uc+88wzO537/vvv58997bXXdjp3zJgx+XPHjBmz07mvvfZa/tz3339/p3OfeeaZ/LmTJk3a6dxHHnkkf+706dN3OnfAgAH5c3/66aedzr311lvz5y5atGinc6+++ur8uWvWrNnp3EsuuSR/7qZNm3Y699xzzy3wPbyzub5HRL58j/j/L98jIl++R0S+fI+IfPke8f9f0fYe8fCzr+50bll9j0hNTQ3vTKHPmF199dWFnbqNUCjEs88+u9uP3x3Lly8HoF69etvs27pt2bJlBeY3b958u8eqV68eX3/9Nenp6dtdBGTQoEEMHDiwOGJLkiRJJdaPy1J5dtJvQccokfbqqoyhUIhwOLxbqzL+1e58xuyBBx7g3nvv5dNPP+XYY48tsG/hwoU0adKEa665hmeeiSw5Gxsby1FHHcWUKVO2OVbv3r15/fXXWbt2LdWrV99mf2ZmZoFTsGlpadSvX58VK1Zs9zpSL1Pa/lwvQYiuSxC8TAkvZfQ9oshzfY+I8D2i6HO3+/d+2bcw/AwI58Lpz8KhZ+947g74HrF7c32PiCjqe8Rv69K54KVprN+0hTb1KvDSxW1Jit/2Yz1l7T0iLS2NOnXqBLcq4w8//MALL7yw0+B709Y3gO39QW/N9Nc3ieTk5B1+U2xv/l8lJCTk/wH8Vfny5Qu8CexIYebsztyiLPFflLl/fdMuzrl//Z9Mcc7d0Z/Pns6Nj4/P/0sa1Ny4uLj8N6vinFuuXLn8N+LinBsbG1vo7+GizI2Jidkrc0Oh0F6ZC3vv773vEUWf63tE0ef6HhGxV98jyuXBR9dDXB606AFHXLzjub5HAL5H7M7c4nyPWLB2E71e+YYN6dkc3qAaw/t2oELCrv/ul4X3iMKeoCp0MbvkkksKNe+XX35h4MCBjBs3jry8POrVq8ddd91V2KcpNnXr1gUKXq641fYuc6xbt+52526dX6VKlSK96UiSJO22j+6E9YsgpT6c8ljQaaSdWvpnOhe9/A3rNmXRfL9KDLu0faFKmQoqthtzzZ07lwsvvJDDDjuMsWPHst9++/HMM8/w22+/0a9fv+J6mkJr164dAFOnTt1m39ZtW+dsHa9YsYIlS5YUmJuRkcH3339fYK4kSdJe88u78N0IIARnvQBJlYNOJO3QytQMLnx5GqvStnBAzQq8fnl7UpILdxZOBe1xMZs3bx4XXXQRhx56KG+++Sa1a9dm8ODBLFiwgKuvvrrQp1L3xMqVK5k7d26Ba7ebNGlC+/btGTt2LEuXLs3fnpaWxpAhQ2jSpEn+UvkQubk0RO5b9lfPP/88GRkZRV4qX5Ikqcg2LIX/XBcZd7oRGnYKNI60M2s2buGil79h2foMGlZL5o2+HahWoXCXcmpbu32Ocf78+dx///2MHj2a3NxcateuzZ133slVV11V6Gtrd+b111/PP3u1du1asrKyePDBBwGoXLky1157bf7c/v37M2zYMCZNmkTXrl3ztw8ePJiuXbty9NFHc/311xMfH8+LL77IypUr+fDDDwvcdfzkk0/mzDPP5OmnnyY1NZXOnTsze/ZsnnvuObp27cpFF120x69JkiRph/Jy4d9XwpZUqNsGjvl70ImkHfpzcxYXvzKdhes2U7dyEiOvOIKalQr/2T1tq8jFbMGCBdx///2MGjWKnJwcatWqxR133EG/fv2K9EHKXRkyZAiff/55gW333HMPAA0aNChQzHakQ4cOTJkyhb///e/cd9995Obm0rZtWz755JMCBW6r0aNHM2jQIIYPH87o0aOpVasWN998MwMGDNitVSklSZIKbcqj8PtUiK8I57wCsV4OpuiUmpFN71e/Yd7qjdSsmMAbV3SgbuXCL9Si7Sv0cvkLFy7kgQceYOTIkeTk5FCzZk1uv/12/va3vxVpxZyyIC0tjZSUlF0uiSlJkgTA79PgtZMhnAdnvQQtzw86kbRdmzNzuHjIN8z6fQPVysfz5lVHcEDNikHHimqF7QaFPmPWrFkzcnNzSUpK4oYbbuCaa64hOTmZjRs3snHjxl0+vmbNmoV9KkmSpLIjYwOM6xspZYedbylT1ErPyuGyoTOY9fsGUpLieP3yDpayYlSkG0z/9TNZRXqSUGinN9srbTxjJkmSCiUchrF94Jd3oEpDuOoLSPRnB0WfLdm5XDZ0BlMX/EHFhHKM6NuBlvUrBx2rRCj2M2b777//bhczSZIkbcd3r0dKWUw5OOdVS5mi0pbsXK4YPpOpC/6gfHwsQy9rbynbCwpdzBYvXrwXY0iSJJUxa3+F8XdExsfeDfXaBJtH2o7MnFz+NuJbvpi/jqS4WF67tD1tGlQJOlap5FKDkiRJ+1pOJoy7DLLToVEXOPKGoBNJ28jKyeOakd8xad5aEuNieLVPO9o3qhp0rFKr0MUsJyeHNWvWkJqaut39f/zxB1dddRX16tUjMTGRxo0bc9tttxVqYRBJkqQy5ZOBsOpHSKoKZ70I3pZHUSY7N4/rR33HJ3NWk1Auhld6t6Njk2pBxyrVCv0uMHToUPbbbz+eeuqpbfalpqZy5JFH8sorr7BixQqysrJYvHgxjz/+ON26dStTC39IkiTt1PxPYNqzkfGZz0Gl/YLNI/2PnNw8bhz9PR/9vIr42Bhe6t2WTgdWDzpWqVfoYjZ58mRCoRBXXHHFNvv+8Y9/MH/+fJKTk3n66af58ccfefvtt2nUqBEzZ85kyJAhxRpakiSpRNq4Gt7pFxm3vwqanhxsHul/5OaFuWXsbD74cSVxsSFeuLg1XQ6qEXSsMqHQy+UfcsghxMfH8913322zr3bt2qxdu5ZHHnmEW265JX/7/PnzOfjgg+natSuffPJJ8aWOci6XL0mStpGXByPPgQWfQa0W0PdTiEsMOpWULzcvzG1vzebfs5ZTLibEcxe15oRDagcdq8QrbDco9Bmz1atX07Rp0222//LLL6xZs4aYmBj69OlTYN+BBx5I+/bt+fHHHwufXJIkqTSa9myklJVLgnOGWMoUVfLywvT/9w/8e9ZyYmNCPH3h4ZayfazQxWzjxo3k5uZus/3rr78GoEWLFlSrtu0HAvfff382bNiw+wklSZJKuhXfRRb8ADjpH1CzWbB5pL8Ih8Pc/e5PjJm5jJgQPHl+K04+1M8+7muFLmZVq1bl119/3Wb7F198QSgUokOHDtt9XHZ2tpfzSZKksitzI7x1OeRlw8GnQZtLg04k5QuHwwz4z8+88c3vhELw+HmtOK1lnaBjlUmFLmYdOnTgp59+YsKECfnb1q1bxzvvvAPA8ccfv93HzZkzhzp1/MOVJEllUDgM798Efy6ASvXgtMEQCgWdSgIipeyB9+cw/OslhELwr3NbcubhdYOOVWYVuphdc801hMNhzjzzTC655BJuvfVW2rVrR1paGnXq1OH000/f5jGLFy9m3rx5tGzZslhDS5IklQjfjYAfx0IoFs59FZK9Oa+iQzgcZtD4ubz61SIAHj77UM5tUy/gVGVbucJOPP7447nnnnt44IEHeP311wmFQoTDYRITE3nttdeIi4vb5jHPP/884XCYE088sVhDS5IkRb01c+DD2yLjY++G/bf/sQ9pXwuHw/xrwjxemrIQgAfPbMH57fYPOJUKXcwABg4cyOmnn87bb7/N2rVrqVevHhdddBGNGzfe7vz4+HhuuOEGTj7Ze3RIkqQyJCsdxl4KORnQ5Fg46sagE0nA/5ey5yYvAOC+05rT64gGAacSFOE+Zio872MmSVIZ95/rYNZwqFAL+n0JFWoGnUgiHA7zyIR5PP/fUjbgtOZcelSjgFOVfoXtBkU6YyZJkqRd+PGtSCkjBGe/ZClTVAiHw/zzo3m88LmlLFpZzCRJkorLHwvgvRsi4863QeOugcaRYNtSdt9pzeljKYs6FjNJkqTikJMJb10KWZtg/yOhyx1BJ5IIh8M8/NFcXvw8stCHpSx6WcwkSZKKw8R7YeVsSKoK57wCsf6YpWD9bykbePohXHJkw2BDaYd8x5AkSdpTc96Hb16IjM96AVK8Sa+CFQ6HeXj8XF7875L4959xCL07Ngw2lHaq0DeYliRJ0nZs+B3evToy7ngtHOT9WxUsS1nJ5BkzSZKk3ZWbDW9dDltSoW4bOG5A0IlUxoXDYQaNn5t/8+gHzjiEiy1lJYLFTJIkaXdNegiWTYeEFDj3VSgXH3QilWHhcJh/fDiHl79YBFjKShqLmSRJ0u747RP48onI+PTBUKVhoHFUtm1Tys5swcVHNAg4lYrCYiZJklRUaSvh31dFxm0vh0PODDSOyrZwOMxDH8zhlS8jpezBM1vQy1JW4rj4hyRJUlHk5sBbl0H6OqjVAk78R9CJVIZZykoPz5hJkiQVxaQH4fepEF8RzhsOcYlBJ1IZFQ6HefCDOQz5byl76KwWXNTBUlZSWcwkSZIK69cJ//+5sjOehmpNgs2jMisvL8x97/3M8K+XAJay0sBiJkmSVBgbfod/XxkZt78KDjkr2Dwqs/Lywvz9nZ8YNf13QiF4+OxDOb/d/kHH0h6ymEmSJO1KThaM7QNbNkCd1nDCA0EnUhmVmxfmjnE/8Na3y4gJwb/Obck5beoFHUvFwGImSZK0KxPvheXfQmIK9BgK5RKCTqQyKCc3j1vGzubd71cQGxPi8fNackarukHHUjGxmEmSJO3ML+/CN89Hxme+AFX8HI/2vezcPG5883s++GEl5WJCDL7wcLoful/QsVSMLGaSJEk78scCePfayPjI66FZ92DzqEzKysnjulGzmPDzauJiQzzbszUnHFI76FgqZhYzSZKk7cneAmMvgcw02L8jHHdv0IlUBm3JzuXqkbP4bO4a4svF8GKvNhzTrGbQsbQXWMwkSZK256M7YdWPkFwNzn0VYuOCTqQyZkt2Lle+/i1Tfl1LQrkYXrmkLUcfWCPoWNpLLGaSJEn/64cx8O1rQAjOfhkq1Qk6kcqY9Kwc+g6bydQFf5AUF8uQPm05skn1oGNpL7KYSZIk/dXaefDejZFxl9vhgOMCjaOyZ1NmDpe9NoPpi/+kfHwsr13anvaNqgYdS3uZxUySJGmrrM0wpjdkb4ZGnaHLHUEnUhmTtiWbPq9OZ9bvG6iYUI6hl7WnTYMqQcfSPmAxkyRJAgiH4f2bYe1cqFALzhkCMbFBp1IZkpqeTe9Xv2H2slQqJZZjRN8OHFavctCxtI9YzCRJkgBmDYMfRkMoJrLYRwVXvtO+s35zFr2GfMPPK9KokhzH65d3oEXdlKBjaR+ymEmSJC2fBR/eFhkfew807BRsHpUpazdmcvGQb5i7aiPVK8Qzom8HmtWuFHQs7WMWM0mSVLal/wljLoHcLGjaHY66MehEKkNWpmZw0cvfsHDdZmpUTGDUFR04oGbFoGMpABYzSZJUduXlwri+kPo7VGkEZz4PMTFBp1IZseSPzVz0yjcsW59B3cpJjOzbgYbVywcdSwGxmEmSpLLr83/Cgk+hXBKcPwKSKgedSGXEb2s2ctEr37A6LZOG1ZIZecUR1K2cFHQsBchiJkmSyqZfP44UM4DTnoTaLQKNo7Lj5xWp9B4ynT82Z3FQrQqMuLwDNSslBh1LAbOYSZKksmf9Yvj3FZFx28uh5QWBxlHZMev39fR5dTppW3I4tG4Kwy9rT5Xy8UHHUhSwmEmSpLIlOwPevBi2bIC6beCkQUEnUhnx9YI/6DtsBpuzcmnboAqvXtqOSolxQcdSlLCYSZKksuXDW2HVD5BcDc4bDuUSgk6kMmDSvDX0e/1bMnPy6HRAdV7q3YbkeH8U1//zu0GSJJUd3w6D70YAIThnCKTUCzqRyoCPflrJdaO+Izs3zHHNavLsRa1JjIsNOpaijMVMkiSVDSu++8tNpP8OTY4JNo/KhLe/W8atY38gNy/MKYftx5PntyIu1lsyaFsWM0mSVPql/wljekNuJhx0MnS6JehEKgNGfrOEu9/5iXAYzm1Tj3+ecxixMaGgYylKWcwkSVLplpcH/74SNvwOVRrCWS94E2ntda98sZAHP5gDwCUdGzDgtEOIsZRpJyxmkiSpdJvyCPw2EcolwnmvexNp7VXhcJinP/uNxyf+CkC/Lk2446SmhEKWMu2cxUySJJVe8yfC5Icj41OfgP0OCzaPSrVwOMzDH83lxc8XAnDL8Qdx7bEHWMpUKBYzSZJUOv25EMZdDoShzaXQqmfQiVSK5eaFufudnxg1/XcA7j7lYPoe3TjgVCpJLGaSJKn0ydwEoy+CLalQty2c/M+gE6kUy8rJ46Yx3/PBDysJhWDQWYdyQfv9g46lEsZiJkmSSpdwGP5zLaz5BcrXhPNf9ybS2msysnLpN+JbPv91LXGxIZ48/3BOOWy/oGOpBLKYSZKk0mXqYPj5bYgpB+cNh0p1gk6kUio1I5vLh85g5pL1JMXF8sLFbehyUI2gY6mEsphJkqTSY8Fn8Ml9kfFJD0ODjoHGUem1dmMmvV+dzpyVaVRMLMfQS9vRpkHVoGOpBLOYSZKk0mH9YnjrMgjnQate0K5v0IlUSi1bn06vV75h8R/pVK+QwPDL2tO8TqWgY6mEs5hJkqSSLysd3uwFGeuhzuFwymPgEuXaC35bs5Fer0xnVdoW6lZOYkTfDjSqXj7oWCoFLGaSJKlkC4fhvRtg1Y+QXB3OHwFxiUGnUin047JULnltOn9uzuKAmhUYcXkHaqf4vabiYTGTJEkl27Tn4ccxEIqF84ZBSr2gE6kU+nrBH1wxfCabMnM4rF4KQy9tT9Xy8UHHUiliMZMkSSXXoinw8d2R8Yn/gIadgs2jUumTX1Zz9RuzyMrJ44jGVXm5d1sqJsYFHUuljMVMkiSVTBuWwtg+EM6Fwy6ADlcFnUil0DvfLeeWsbPJzQvT7eBaPNPzcBLjYoOOpVLIYiZJkkqe7IzIYh/pf0Dtw+C0J13sQ8Vu+NeLuffdnwE4+/C6PHLuYZSLjQk4lUori5kkSSpZwmF4/yZY+T0kVYULRkJcUtCpVIqEw2Ge+ew3Hpv4KwB9jmzIvac2JybG8q+9x2ImSZJKlukvw+xREIqBHkOh8v5BJ1IpkpcX5v73f2Ho1MUA3HDcgdzY7UBCnpHVXmYxkyRJJceiKfDRnZHx8Q9A4y7B5lGpkpWTxy1jZ/Pe7BUA3Htqcy7r1CjgVCorLGaSJKlkWL8YxlwSWezj0B7Q8ZqgE6kU2ZSZw99GfMsX89dRLibEY+e15IxWdYOOpTLEYiZJkqJf5kYYdSFk/Al1DofTn3axDxWbPzZlcunQGfywLJXk+Fie79WGLgfVCDqWypioXlZm1KhRtGnThqSkJKpXr86FF17IkiVLdvm4yZMnEwqFdvr11VdfFWp+q1at9uIrlCRJu5SXB2/3gzW/QIVacMEbLvahYrP0z3R6vPA1PyxLpUpyHG9ccYSlTIGI2jNmzzzzDNdddx1HHXUUTzzxBOvWrePJJ59kypQpzJgxgzp16uzwsQcffDCvv/76NtszMzO58sorqV69Ou3bt99m/5VXXsnRRx9dYFvVqlX3/MVIkqTd9/nDMPd9iI2H80dCpR3/DCAVxdxVaVzy6nRWp2VSt3ISwy9vT5MaFYKOpTIqKovZH3/8Qf/+/WndujWTJ0+mXLlIzJNOOon27dtz77338sorr+zw8bVq1aJXr17bbB81ahR5eXn07t2buLht79besWPH7T5OkiQF5Od34PN/RsanPgn12wWZRqXIjMV/cvnQGaRtyaFprYoMu6w9tVMSg46lMiwqL2V899132bRpE9dff31+KQNo27YtnTt3ZsyYMWRlZRX5uFvLXN++fXc4Jz09nS1bthQ9tCRJKl4rf4B3/hYZH3ENHH5RsHlUakz8ZTW9XvmGtC05tG1QhTFXdbSUKXBRWcymT58OwJFHHrnNviOPPJKNGzcyd+7cIh1z0aJFTJo0iU6dOtG0adPtzrnhhhsoX748SUlJNGrUiAceeIDs7OyivwBJkrRnNq+D0RdBdjo0PgaOvz/oRColxsxcSr8R35KZk8dxzWry+uUdSEne9koqaV+LyksZly9fDkC9evW22bd127JlyzjssMMKfcxXX32VcDi83bNlcXFxnHrqqXTv3p169eqxatUqRo8ezb333stXX33FBx98QGxs7A6PnZmZSWZmZv6v09LSCp1LkiT9j5wsGNMbUn+Hqo2hx2sQG5U/sqgECYfDvPD5Qv75UeQf93u0qcegsw+lXGxUnqdQGRSV73Lp6ekAJCQkbLMvMTGxwJzCyM3NZejQoVSqVIkePXpss/+oo47ivffeK7DtiiuuoG/fvgwZMoQ333yTnj177vD4gwYNYuDAgYXOI0mSduKjO2DJVxBfES4cDUlVgk6kEi4vL8xDH85hyJeLAOjXpQl3nNSUkLdcUBSJyn8iSE5OBihwFmqrjIyMAnMKY8KECSxbtowLL7ywSI+75557APjggw92Oq9///6kpqbmfy1durTQzyFJkv5ixisw81UgBOe8AjW2//EDqbCycvK4ecz3+aXs7lMO5s6Tm1nKFHWi8oxZ3bqRu6wvW7aMAw88sMC+nV3muCNDhgwBdr7ox/bUr1+f2NhY1q5du9N5CQkJ2z27J0mSimDxlzD+jsj4uHuh6UnB5lGJtzkzh6tHzuLzX9dSLibEv3ocxlmHF/5nSGlfisozZu3aRZbCnTp16jb7pk6dSoUKFWjWrFmhjrVmzRree+89DjvsMNq2bVukHAsXLiQ3N5fatWsX6XGSJKmI1i+GNy+GvBxocS50uinoRCrh1m7M5MKXp/H5r2tJiovllUvaWsoU1aKymJ1xxhkkJyczePBgcnJy8rfPnDmTKVOmcN555xEfHw/AypUrmTt37g4/czZ8+HCys7N3erZs1apV22zLzc2lf//+AJx++ul78nIkSdLOZG6KrMCY8Sfs1xJOfxq8zEx7YNG6zZzz/FR+WJZK1fLxvHFFB7o2rRl0LGmnQuFwOBx0iO156qmnuPHGGznqqKO4+OKLWbduHU888QRxcXHMnDkz/3LHPn36MGzYMCZNmkTXrl23OU7z5s1ZtGgRK1asoEqV7X94uHXr1lSrVo1OnTpRt25dVq9ezdixY5k9ezZnn302b731VpGuQ05LSyMlJYXU1FQqVaq0W69fkqQyIS8X3uwF8z6E8jXhykmQ4lkN7b7vfl/P5cNm8ufmLPavmsywy9rTqHr5oGOpDCtsN4jKz5hB5J5i1atX57HHHuPGG28kOTmZ448/nkGDBuWXsl2ZOnUqc+bMoWfPnjssZQDnn38+//nPf3j22WdZv349ycnJtGjRghdffJG+ffv64VBJkvaWT+6LlLLYBLjgDUuZ9sgnv6zm2lGz2JKdx2H1UhhySTtqVHQdAJUMUXvGrCTzjJkkSYXw3Qh495rI+OxX4LBtb2kjFdbIb5Zwzzs/kReGY5rW4JmerSmfELXnIFSGlPgzZpIkqRRb/BW8d2Nk3Pl2S5l2Wzgc5omJvzL4s98AOL9tfR46q4U3jlaJYzGTJEn71p8LI58ry8uG5mdA1/5BJ1IJlZ2bx13//pGx3y4D4IbjDuTGbgf6MRSVSBYzSZK072xJhTcuiKzAWOdwOPMFiPHMhorur/coi40J8dCZLbig/f5Bx5J2m8VMkiTtG7k5MPZSWDcPKtaBC0ZBfHLQqVQCrdm4hcuGzuCn5WkkxcXy7EWHc2yzWkHHkvaIxUySJO0bE+6CBZ9CXDJcOAoq7Rd0IpVAC9du4pLXprP0zwyqlY/n1T7taFm/ctCxpD1mMZMkSXvfjFdg+ouR8VkvQp1WgcZRyTTr9/VcPnQG69OzaVAtmWGXtqeh9yhTKWExkyRJe9eCz+DD2yPj4+6F5qcHm0cl0sRfVnPdf+9R1rJeCkP6tKN6Be9RptLDYiZJkvaetb/CmD4QzoWWF0Knm4NOpBLo9a8XM+A/P5MXhmOb1eSZnoeTHO+PsSpd/I6WJEl7R/qf8MZ5kJkK9Y+A054ClzFXEeTlhRk0fg4vf7EIgAva1efBM71HmUoni5kkSSp+OVkwpjesXwSV94cLRkI5LztT4WVk5XLTm9/z0c+rALjtxKZc3bWJ9yhTqWUxkyRJxSschg9ugsVfQHxFuPBNKF896FQqQdZtyqTvsJl8v3QD8bEx/KvHYZzRqm7QsaS9ymImSZKK1xePwXcjIBQD574KtZoHnUglyIK1m+jz3+XwKyfH8dLFbWnfqGrQsaS9zmImSZKKz49vwWcPRMbd/wUHnRBsHpUo3yz8gytf/5bUjGz2r5rMa5e2o0mNCkHHkvYJi5kkSSoeS76Gd/4WGXe8Ftr1DTaPSpR3v1/ObWN/ICs3j8P3r8wrvdtSzeXwVYZYzCRJ0p77YwGMvhBys6DZqXD8A0EnUgkRDod5dtJvPPrxrwCc3KI2T5zfisS42ICTSfuWxUySJO2ZzX/AyHMhYz3UbQNnvwwxLmeuXcvOzePvb//ImJnLALiqc2PuOKkZMTGuvKiyx2ImSZJ2X/YWGN0T/lwIKfvDhaMhPjnoVCoB0rZkc/WIWXz52zpiQjDw9EO4uGPDoGNJgbGYSZKk3ZOXB+9eA0unQUIKXDQWKtQMOpVKgOUbMrjstRnMW72R5PhYnul5OMc2qxV0LClQFjNJkrR7Jj0EP70FMeXg/OFQs1nQiVQC/LQ8lUuHzmDtxkxqVkzg1T7taFE3JehYUuAsZpIkqehmvQ5fPBoZnzYYGncNNI5Khgk/r+LG0d+TkZ1L01oVee3SdtSpnBR0LCkqWMwkSVLRLJgE798YGXe+DQ6/KNA4in7hcJiXpizk4Y/mEg7D0QdW59mLWlMpMS7oaFLUsJhJkqTCWzMHxvSGvBxocS4c8/egEynKZeXkcfc7/7/y4sVHNGDAac0pF+vKndJfWcwkSVLhbFwNI8+DzDTYvyOc+RyEXNZcO7YhPYt+I75l2sI/iQnBvac2p89RjYKOJUUli5kkSdq1zE0w6nxI/R2qNoEL3oByCUGnUhRbtG4zlw2dwaJ1m6mQUI6nLzycY5q5aqe0IxYzSZK0c7k58NalsOI7SKoaWRY/uWrQqRTFvl7wB/1GfEtqRjZ1KycxpE9bmtWuFHQsKapZzCRJ0o6Fw5GFPuZ/DOWSoOcYqNYk6FSKYmNmLOWut38kJy9Mq/qVebl3W2pU9OyqtCsWM0mStGOfPwLfvQ6hGDj3VajfLuhEilJ5eWH+OWEuL36+EIDTWtbhX+ceRmJcbMDJpJLBYiZJkrZv1usw+R+RcfdHoVn3YPMoaqVn5XDTm98z4efVAFx/3IHc1O1AQi4OIxWaxUySJG1r/kR474bI+OhboN3lweZR1FqVuoW+w2fw0/I04mNjeOTcwzjz8LpBx5JKHIuZJEkqaPksGHMJhHOh5YVw7D1BJ1KU+ml5KpcPm8HqtEyqlY/npd5taNPAhWGk3WExkyRJ/+/PRfDGeZC9GRofA6cN9l5l2q7xP67k5jGzycjO5cCaFXi1TzvqV00OOpZUYlnMJElSxOY/YOS5sHkt1D4UzhsO5eKDTqUoEw6HGfzpbzzxya8AdD6oBs/0PJxKiXEBJ5NKNouZJEmCrHQYdQH88Ruk1IeeYyHR+06poIysXG4dO5sPflwJwGVHNeKu7s0oFxsTcDKp5LOYSZJU1uXlwr+vgGXTIbEy9BoHlfYLOpWizIoNGVwxfCY/r0gjLjbEQ2ceynnt6gcdSyo1LGaSJJVl4TCMvx3mvg+xCXDhaKjRNOhUijLfLlnPVa9/y7pNkUU+Xri4De0ausiHVJwsZpIklWVfPAYzXgFCcM7L0KBj0IkUZd76dhl3/ftHsnLzOHi/Srzcuw31qrjIh1TcLGaSJJVV3w6Dzx6IjE96GJqfEWweRZXcvDD//GguL01ZCMCJh9Ti8fNaUT7BHx+lvcG/WZIklUVz3of3b4yMj74FjugXaBxFl7Qt2dww6jsmzVsLwPXHHsCN3Q4iJsZbJ0h7i8VMkqSyZvFX8NZlEM6D1r29gbQKWLxuM32Hz+S3NZtIKBfDoz1aclrLOkHHkko9i5kkSWXJqp9g1IWQmwnNToVTnvAG0so39bd1/G3kLFIzsqldKZGXe7fl0HopQceSygSLmSRJZcX6xTDibMhMhf2PhHNegVh/FFDkptGvT1vCwPd+ITcvTMv6lXn54jbUrJQYdDSpzPDdWJKksmDTWnj9LNi0GmoeAheOgrikoFMpCmTm5HLff35h1PTfATjr8LoMOvtQEuNiA04mlS0WM0mSSrvMjTDyXPhzIVTeP3ID6aTKQadSFFiTtoW/jZzFt0vWEwrB7Sc2o1+XxoS8vFXa5yxmkiSVZjmZ8GYvWPk9JFeDXm9Dpf2CTqUo8N3v6+k34ltWp2VSMbEcgy88nGOa1gw6llRmWcwkSSqt8vLg7X6wcDLEV4CL3oLqBwSdSlFgzIyl3P3OT2Tl5nFAzQq83LstjaqXDzqWVKZZzCRJKo3CYfjoDvj53xATB+ePgLqtg06lgGXn5vHA+78w/OslAJzQvBaPn9+KCt40WgqcfwslSSqNpjwK018CQnD2i9DkmKATKWDrNmVy9chZTF/0JwA3dTuI6449wJtGS1HCYiZJUmkz/WWY9GBkfPIj0OKcYPMocD8uS+Wq12eyInULFRLK8cT5rTi+ea2gY0n6C4uZJEmlyew34cNbI+Mud0CHK4PNo8D9e9Yy+v/7RzJz8mhcvTwv9W7LATUrBB1L0v+wmEmSVFrM/RDe+Vtk3KEfdO0fbB4FKic3j0Hj5zLky0UAHNusJk9e0IpKiXEBJ5O0PRYzSZJKg0VTYGwfCOdCy55w4iDwXlRl1p+bs7j2jVlMXfAHANcdewA3dTvIz5NJUcxiJklSSbfsWxh1IeRmQrNT4fSnISYm6FQKyM8rUrly+Lcs35BBcnwsj/VoycmHeu86KdpZzCRJKslW/wIjz4GsTdCoC5wzBGL933tZ9fZ3kc+TbcnOY/+qybzcuy1Na1cMOpakQvCdW5KkkurPRfD6WZCxHuq2hQvegLjEoFMpAFk5eTz0wS8M++/9yTofVIPBF7SicnJ8wMkkFZbFTJKkkihtJQw/AzatgprN4aKxkOBKe2XR6rQtXD1yFt8uWQ/A9ccewA3dDiLWz5NJJYrFTJKkkib9T3j9TNiwBKo0govfhuSqQadSAL5Z+AfXvPEd6zZlUjGxHE+c14pu3p9MKpEsZpIklSSZG2HEObB2LlTcD3q/CxVrB51K+1g4HGbIl4sYNH4uuXlhmtWuyAu92tCwevmgo0naTRYzSZJKiuwtkdUXV8yCpKpw8TtQpUHQqbSPbc7M4Y5xP/D+DysBOKNVHQadfSjJ8f5YJ5Vk/g2WJKkkyMmCMb1h8RcQXxF6jYOazYJOpX1s4dpN9BvxLb+u3kS5mBB3n3IwlxzZkJD3rJNKPIuZJEnRLjcHxl0O8ydAuUToORrqtg46lfaxCT+v4pYxs9mUmUONigk8d1Fr2jX0s4VSaWExkyQpmuXlwjt/gzn/gdh4uGAkNOwUdCrtQ7l5YR77eB7PTV4AQLuGVXi2Z2tqVvLWCFJpYjGTJClahcPw/o3w4xiIKQc9hsEB3YJOpX3oz81ZXD/qO778bR0Alx7VkLu6H0xcbEzAySQVN4uZJEnRKByG8XfArOEQioGzX4Zm3YNOpX3o+6UbuGbkLJZvyCApLpaHzzmUM1rVDTqWpL3EYiZJUrQJh+GTATD9xcivz3gOWpwdbCbtM+FwmOFfL+HBD34hOzdMw2rJvHBxG5rVrhR0NEl7kcVMkqRo8/kj8NVTkfGpT0CrC4PNo31mU2YOd/5lKfwTD6nFv3q0pFJiXMDJJO1tFjNJkqLJV0/B5H9ExicOgraXBZtH+8y8VRv528hvWbh2M+ViQtx5cjMu79TIpfClMsJiJklStPjmJZh4b2R87D3Q8epg82ifeevbZdz9zo9syc6jdqVEnr3ocNo0cCl8qSyxmEmSFA1mDYfxt0XGnW+DzrcGm0f7xJbsXAa8+zNvzlwKwNEHVufJ81tRrUJCwMkk7WsWM0mSgvbDWPjP9ZFxx2vhmL8Hm0f7xOJ1m/nbyFnMWZlGKAQ3HncQ1x57ALExXroolUUWM0mSgvTTv+Htq4AwtL0cTngQ/ExRqffRTyu5bewPbMzMoVr5eJ664HA6HVg96FiSAmQxkyQpKD+/A+P6QjgXWvWC7o9aykq57Nw8Hh4/lyFfLgKgXcMqPH1ha2qnJAacTFLQLGaSJAXhl//AW5dFSlnLnnD6YIiJCTqV9qIVGzK49o1ZzPp9AwBXdm7MbSc2JS7WP3dJFjNJkva9Oe/DW5dGStlhF8AZz0BMbNCptBd9/utabhz9HevTs6mYWI7HerTkhENqBx1LUhSxmEmStC/N/QDGXgJ5OXBoDzjzOUtZKZadm8fjE3/l+ckLAGhRtxLP9WzD/tWSA04mKdpE9bnzUaNG0aZNG5KSkqhevToXXnghS5YsKdRju3btSigU2u7XO++8s838rKws7r//fpo0aUJCQgINGjTgjjvuID09vZhflSSpzJo3Hsb8t5S1OBfOfMFSVoot35DBBS9Nyy9lvY7Yn7f6HWkpk7RdUXvG7JlnnuG6667jqKOO4oknnmDdunU8+eSTTJkyhRkzZlCnTp1dHqN69eo88cQT22xv27btNtt69uzJuHHjuPjii+ncuTOzZ8/mscceY+bMmUycOJEYr/uXJO2JXyfAmN6Qlw2HnA1nvQixUfu/Ye2hib+s5taxs0nNyKZiQjn+ee5hdD90v6BjSYpiUfl/hD/++IP+/fvTunVrJk+eTLlykZgnnXQS7du359577+WVV17Z5XHKly9Pr169djlvwoQJjBs3juuuu47Bgwfnb2/YsCG33norb7zxRqGOI0nSds2fCG/2gtwsaH4mnP2ypayUyszJ5eHxc3ntq8UAtKyXwtMXtvYsmaRdisrTQO+++y6bNm3i+uuvzy9lEDnT1blzZ8aMGUNWVlahjpWXl0daWhp5eXk7nDNy5EgAbrnllgLbr776apKSkhgxYsRuvApJkoDfPoHRF0VK2cGnwzmvWMpKqSV/bObc57/OL2V9OzVirJcuSiqkqCxm06dPB+DII4/cZt+RRx7Jxo0bmTt37i6Ps3z5cipUqEBKSgrly5ene/fuzJw5c7vPV6dOHRo0aFBge1JSEq1atcrPI0lSkfz2KYzqCbmZ0OxUOPdViI0LOpX2gvd/WMEpg7/kx+WpVE6OY8glbbn71ObEl4vKH7UkRaGo/Ce75cuXA1CvXr1t9m3dtmzZMg477LAdHqNhw4YceeSRHHrooSQkJPDdd98xePBgjjrqKMaPH8+xxx5b4PmaN2++3ePUq1ePr7/+mvT0dJKTt/8vXpmZmWRmZub/Oi0tbdcvUpJUui2YBKP/W8qangLnvmYpK4W2ZOdy//u/8MY3vwORG0Y/dcHh1KmcFHAySSVNVBazrSshJiQkbLMvMTGxwJwdGTp0aIFfn3322fTq1YvWrVvTr18/fv311wLPt73n+t/n21ExGzRoEAMHDtxpHklSGTL/E3jzIsjZAgedDD2GQrn4oFOpmP22ZhPXvjGLuas2EgrBNV0P4MZuB1LOG0ZL2g1R+c6xtQD99SzUVhkZGQXmFEXTpk0577zzmD9/PvPnzy/wfNt7rsI+X//+/UlNTc3/Wrp0aZGzSZJKiXkfwegLI6WsaXc4b5ilrBQa9+0yTnv6S+au2kj1CvEMv6w9t57Y1FImabdF5RmzunXrApHLFQ888MAC+3Z2mWNhNGzYEIC1a9fmH7tu3bosW7Zsu/OXL19OlSpVdlrMEhISdnjGTZJUhsx5H8b2iSyJf/DpcM4QS1kpszkzh3vf/ZlxsyI/NxzZpBpPnt+KmpUSA04mqaSLyn/WadeuHQBTp07dZt/UqVOpUKECzZo1261jbz1TVrt27QLPt2LFim1uXp2RkcH333+fn0eSpB36+R0Ye8n/36fs3FctZaXMD8s2cOrTXzJu1jJiQnDz8Qfx+uUdLGWSikVUFrMzzjiD5ORkBg8eTE5OTv72mTNnMmXKFM477zzi4yP/s1u5ciVz584t8Jmz9evXb3c5/ZkzZzJmzBgOOeQQGjdunL+9Z8+eADz22GMF5j///PNkZGR4DzNJ0s79+Ba8dRnk5cCh5/33PmUu9FFa5OWFefHzBZzz/FQWrdvMfimJjLriCK4/7kBiY0JBx5NUSoTC4XA46BDb89RTT3HjjTdy1FFHcfHFF7Nu3TqeeOIJ4uLimDlzZv7ljn369GHYsGFMmjSJrl27AvDOO+9w1VVX0aNHDw444AASEhL4/vvvGTp0KOXKleOTTz6hY8eOBZ7vrLPO4p133qF379507tyZ2bNn89xzz3H00Ufz6aefEhNT+A6blpZGSkoKqampVKpUqdh+TyRJUWj2m/BOPwjnQauL4PSnISY26FQqJmvStnDzmNl8+ds6AE46pDYPn3MolZM9GyqpcArbDaLyM2YAN9xwA9WrV+exxx7jxhtvJDk5meOPP55Bgwbll7Idadq0KV26dOGjjz5i9erVZGZmUqdOHXr16sWdd965zefWAEaPHs2gQYMYPnw4o0ePplatWtx8880MGDCgSKVMklSGfDcC3r0WCEPr3nDqU+D/M0qNT+es5ra3fuDPzVkkxsUw4LRDuKBdfUIhz5JJKn5Re8asJPOMmSSVATNfg/dvjIzbXg7dH7WUlRJbsnN5ePxchk5dDEDz/Sox+MLDOaBmhWCDSSqRSvwZM0mSotb0l+HDWyPjDv3gpIfBsyilwq+rN3L9qO+Yu2ojAJcd1Yg7Tm5KQjkvT5W0d1nMJEkqimnPw0d3RsYdr4UTHrSUlQLhcJgR3/zOg+//QmZOHtXKx/Noj5Yc06xm0NEklREWM0mSCuuLx+DT+yPjTjfDcfdaykqB9ZuzuGPcD3z8y2oAjj6wOo+d15KaFV0GX9K+YzGTJGlXwuFIIfvy8civu9wBXftbykqBqQvWcdOb37M6LZO42BB3nNSMy45qRIzL4EvaxyxmkiTtTF5e5NLF6S9Gfn38/XDUDcFm0h7Lysnj8Ym/8uKUBf/X3n1HR1Xmfxx/Z9I76SGFJAQITaRLL6ugoi6KCoqC2HdXBWR1V2wI6g93V0VZy8pasKMsIIKIiqKg1CgdAggkhPQQ0vvM/f0xEIwJmCBwJ8nndU5Ocp97Z/INZ04yH57nfh8MA9qGeDP3hh50jfQ3uzQRaaEUzERERE7FZoVPJ8PW9wAnuOI56HO72VXJ77Q/q4gpC7ayO6MQgHG9o5nxx854ueltkYiYR7+BRERE6lNdCUvugl1LwMkCV78KF95gdlXyO9hsBm+vT+aZz5OoqLYR4OXK7DEXcFnX1maXJiKiYCYiIlJHVTksvAX2rQSLK1z3JnT+o9lVye+QVVjOAwu3sXZ/LgBDO4Twr+u6EeqnBh8i4hgUzERERH6pohgW3AiH1oCLB4x7H9pfYnZV8jus2JHBw0t2kF9ahbuLhUeu6MSEfjE4qXmLiDgQBTMREZETyvLh/evhyCZw84XxH0HsQLOrkjNUVF7FjE93sfinNAC6RvrxwrgetAv1MbkyEZG6FMxEREQASnLh3ashcwd4tIIJiyGyl9lVyRnadCiPaR9v5cixMixO8Odh8Uy5uANuLhazSxMRqZeCmYiISGE6vDMacveBdyhM/ATCuphdlZyBymobc1bt4z/f2dvgRwd6Mmdsd3rHBppdmojIaSmYiYhIy3b0gH2mLP8w+EXBxKUQ3M7squQM7M8qYupHW9mVbm+Df32vKB6/qjO+Hq4mVyYi8tsUzEREpOXK2AbvXQslORDY1h7KWrUxuyppJJvN4J31ycxWG3wRacIUzEREpGVK/h4+vBEqCiG8G9y8CHxCza5KGunIsVIeXLid9QePAjCkQwjPqg2+iDRBCmYiItLyJK2AhZPAWgExg+DGD8DD3+yqpBEMw+DjxFSeXL6H4opqPF2dmT6qo9rgi0iTpWAmIiIty5b34dP7wLBCwhX2zaNdNbvSlGQVlvPQou2s3psDQO+YAJ69/kJig71NrkxE5MwpmImISMvxw1z46jH7191vhqteBGf9KWwqDMPg023pPL50FwVlVbg5W3jg0g7cPqgtzhbNkolI06a/RiIi0vwZBqx6An54wX48YDKMmAVa8tZkHC2u4LGlO1mxIxOACyL9eW7shXQI8zW5MhGRs0PBTEREmjdrNSyfClvetR9fMhMGTTWzImmkL3Zl8siSHeQWV+JiceK+P7TnL8PjcXXWZtEi0nwomImISPNVVQ6Lboek5eBkgavmQs8JZlclDVRQVsXMT3exeEsaAB3CfHh+bHe6RqpRi4g0PwpmIiLSPJUXwoLxkLwWnN3tTT46XWl2VdJA3+3L4e//205mYTkWJ7hrSDz3j2iPu4uz2aWJiJwTCmYiItL8FGbA+9dD1g5w87W3w48bYnZV0gDFFdX834o9fLDxMACxQV48N/ZCesUEmlyZiMi5pWAmIiLNS85eeO9aKEgF71C4aSFEdDe7KmmANftymL54B2n5ZQBMGhDL3y5LwMtNb1dEpPnTbzoREWk+Dm+AD8ZBeT4EtYObF0FArNlVyW8oLK/i6eV7+CgxFYCoAE/+eW03BrQLNrkyEZHzR8FMRESahz3LYNEdUF0OUX3gxo/AO8jsquQ3fJOUxcOLd5JZWA7YZ8kevDQBb3e9RRGRlkW/9UREpOnb9F9Y8SBgQMIouPYNcPMyuyo5jfzSSmYt213TcTE2yIt/XnchfeN0L5mItEwKZiIi0nQZBnw9C75/3n7caxKMeg6c9efNka3cmcmjn+wkt7gCJye4Y1Ac00Yk4Ommjosi0nLpL5eIiDRN1ZWwbDJs+9B+PPxRGPIAODmZW5ec0tHiCmZ8uovl2zMAiA/x5l/XX0jPNgEmVyYiYj4FMxERaXoqiuDjiXDgG3Byhj/OhR43m12VnIJhGCzfnsGMT3eRV1KJs8WJu4a0ZcrF7fFw1SyZiAgomImISFNTlAXvXweZ28HVG8a+De1HmF2VnEJ2UTmPfbKTL3ZlAdAx3Jd/XteNblGtzC1MRMTBKJiJiEjTkZ0EH1wP+YfBOwTGfwyRPc2uSuphGAaLf0pj1vLdFJRV4WJx4i/D23Hv8Ha4uVjMLk9ExOEomImISNNw8Fv4aCJUFEBgW/seZYFtza5K6nH4aCmPfLKDtftzAegS4ce/rruQzhF+JlcmIuK4FMxERMTxbXkPlk0BWzVE94MbPtAeZQ6o2mrjzR8O8fxX+yivsuHmYmHKxe25a0hbXJ01SyYicjoKZiIi4rgMA755CtY+az/ueh2MfhlcPcytS+rYmVbAQ4u3szOtEIB+bQOZPaYbccHeJlcmItI0KJiJiIhjqiqHpffAzv/Zj4c8CMMeBotmXhxJWaWVF77ex+trD2G1Gfh5uPDIFZ0Y2zsaJ21dICLSYApmIiLieEqOwkc3weH1YHGBq15UO3wH9MPPuUxfvIPDeaUAXHFBa2b8sTOhvprRFBFpLAUzERFxLEcP2Nvh5x0Ed38Y9y60HWp2VfIL+aWVPPXZHv734xEAwv08ePLqrozoHGZyZSIiTZeCmYiIOI6UdbBgPJQdg1ZtYPxCCO1odlVynGEYLNuewaxlu8gtrsTJCW6+KIa/XZaAr4er2eWJiDRpCmYiIuIYti+EpX8BayVE9oIbF4BPqNlVyXFHjpXy+NJdfJOUDUC7UB/+ce0F9IoJNLkyEZHmQcFMRETMZbPB6qdPdl7sdBVcMw/cvMytSwCostp48/tDvLBqP2VVVlydnbhneDv+PCwedxdns8sTEWk2FMxERMQ8lSWw5G7Ys8x+PHAKXPyEOi86iB9T8nhkyU6SMosA6BsbyNPXdKV9mK/JlYmIND8KZiIiYo6CI/DhjZC5HZzd7J0Xu483uyrB3tzjHyuT+HBTKgABXq5MH9WJ63tFqQW+iMg5omAmIiLn35FEeygryQavYLjhfWjTz+yqWjzDMFiyJY2nP9vD0ZJKAMb2juKhyzsR6O1mcnUiIs2bgpmIiJxf2xfaN462VkBoF7jxQwiIMbuqFu9ATjGPLtnJ+oNHAWgf6sNTV3florZBJlcmItIyKJiJiMj58esmHwmjYMw8cNf9SmYqr7Lyyuqf+c93B6m02vBwtTD54vbcMagtbi66109E5HxRMBMRkXOv3iYfM8Cirn5mWrs/h0c/2UnK0VIAhiWE8OTorkQHqiOmiMj5pmAmIiLnlpp8OJyswnKe+mwPy7alAxDm584TV3Xhsq7hau4hImISBTMRETl3UtbDxxOgJEdNPhxAldXG/B+SeWHVPkoqrVic4JYBsUwb0QFfD1ezyxMRadEUzERE5OwzDEh8Ez7/G9iqIawr3PCBmnyYaN2BXGYs3cX+7GIAerRpxZOju9I10t/kykREBBTMRETkbKuugBUPwk9v24+7XAOjXwY3b3PraqEyC8p5esXJZYuB3m48dHlHrusZhcWiZYsiIo5CwUxERM6eokz4aAIc2QQ4wSUzYOBU0H1L512V1cZbPxzixVX7a5Yt3twvhr+OSMDfS8sWRUQcjYKZiIicHUcSYcFNUJwJHv5w7ZvQ/hKzq2qR1v2cy+Of7uLn48sWe7ZpxSwtWxQRcWgKZiIi8vtteQ+W3w/WSgjpaL+fLCje7KpanIyCMp76bA+fbc8AIOj4ssVrtWxRRMThKZiJiMiZs1bBFw/Dpnn2445XwjX/0abR51lltY03fzjE3K/3U3p82eKEfjFM07JFEZEmQ8FMRETOTHEOLJwEKd/bj4c/AoMfAIvF1LJamtV7s3ly+W4O5pQA0CsmgFmju9AlQssWRUSaEgUzERFpvNTN8PFEKEoHN18YMw86jjK7qhblYE4xTy7fzeq9OQAE+7jx0OWdGNMjUssWRUSaIAUzERFpOMOAza/Dyulgq4LgDjDuPQhJMLuyFqOwvIp/f72ft35Iptpm4OrsxK0D47j3D+3w0ybRIiJNloKZiIg0TGWJvcHH9o/sx51H2/cn0/1k54XVZrAwMZV/fbGXoyWVAPyhYyiPXtGJtiE+JlcnIiK/l4KZiIj8tqMH4KObIXs3ODnDiFnQ/x7tT3aebE7OY+ayXexMKwSgbYg3j13ZmeEJoSZXJiIiZ4uCmYiInN6e5fDJn6GiELxD4fr5EDvQ7KpahPT8MmZ/nsSybekA+Lq7MOWS9kzsH4ubi5qsiIg0JwpmIiJSP2s1fPMk/PCC/Ti6nz2U+bU2s6oWobzKymvfHeTV736mvMqGkxPc0Ceav45MINjH3ezyRETkHFAwExGRuopzYNFtcGiN/bjfX+zLF53VXOJcMgyDZdsz+MfnSaTllwHQNzaQx6/qTNdItb8XEWnOFMxERKS2wxvt+5MVpYOrN4z+N3S91uyqmr0fU/J4cvketqbmAxDh78H0UZ24sltrnHQvn4hIs6dgJiIidjYbrP83rJoJhhWC2ttb4Yd2NLuyZu3w0VL+sTKJz3ZkAODl5syfhsZz5+C2eLo5m1ydiIicLwpmIiICpXmw5E+w/wv7cddr4aoX1Qr/HCooq+Klb/bz9roUKq32+8jG9ormryM7EOrnYXZ5IiJynimYiYi0dIc3wv9uhcI0cHaHy/8BvSapFf45UmW18f6GFF78ej/HSqsAGNw+mIdHdaJTaz+TqxMREbMomImItFS/XroYGA9j34bwC8yurFkyDINVe7KZvWIPB3NLAGgX6sMjV3RiWIcQ3UcmItLCKZiJiLREWrp4Xu1MK+Cpz3az4WAeAEHebtw/ogM39InGxVn7kYmIiIKZiEjLo6WL501afhnPf7mPxVuOYBjg5mLhjkFx/HlYPL4e2npAREROUjATEWkptHTxvMkvreSVbw8wf10yldU2AEZ3j+DBSxOICvAyuToREXFECmYiIi1BURZ88mc48LX9WEsXz4nyKivz1yXzyuqfKSyvBuCiuECmj+pE9+hW5hYnIiIOTcFMRKS52/+VPZSV5ICLB1w2G3rdqqWLZ5HVZrDoxyM8/9U+MgvLAegY7svfL++oxh4iItIgCmYiIs1VdQWsegI2vGI/Du0C172pDaPPohOdFv+5Mon92cUARLbyZNqIDlzdIxJniwKZiIg0jEO3gvrwww/p1asXnp6eBAcHc+ONN5KSkvKbjzt27BgvvvgiI0eOJDo6Gk9PTxISErjrrrtITU2tc/23336Lk5NTvR/du3c/Bz+ZiMg5lrMPXr/4ZCjrezfc+Y1C2Vn0Y0oeY19bz53vJLI/u5hWXq48ekUnvv7rUK7tFaVQJiIijeKwM2YvvfQS9913HwMHDmTOnDnk5ubywgsvsGbNGjZv3kxERMQpH7tx40amTZvGH/7wB+655x6Cg4PZtWsXr732Gh9//DHr1q2jc+fOdR531113MXjw4FpjgYGBZ/1nExE5ZwwDfnoHVj4EVaXgFQSjX4GEy8yurNn4ObuIf67cy5e7swBwd7Fw26A4/jQ0Hn9PdVoUEZEz45DB7OjRo0yfPp2ePXvy7bff4uJiL/Oyyy6jb9++PP7447z++uunfHzHjh3Zu3cv7dq1qzV+xRVXMGLECGbMmMHChQvrPK5///7cfPPNZ/eHERE5X8qOwbIpsHup/bjtMLjmNfANN7Ws5iItv4y5q/az8MdUbAZYnGBs72imXtKBcH8Ps8sTEZEmziGD2dKlSykuLmby5Mk1oQygd+/eDBkyhI8//phXXnkFNze3eh8fGxtb7/gll1xCYGAgO3bsOOX3Li0txWKx4OGhP7Ii0oSkrIdFd0DhEbC4wMWPQ//7wOLQK9abhJyiCl5e/TMfbDxMpdXe+n5E5zD+dmkC7cPU1VJERM4Oh/yLvWnTJgAGDBhQ59yAAQMoKioiKSmp0c9bUFBAUVERoaGh9Z6fMmUK3t7eeHp6EhcXx5NPPklVVVWjv4+IyHlTXWnfl2z+KHsoC2wLt38FA6colP1O+aWV/GNlEkP+udq+H5nVxkVxgfzvT/3578TeCmUiInJWOeSMWVpaGgBRUVF1zp0YO3LkCN26dWvU8z711FNUVVVxyy231Bp3dXXlyiuvZNSoUURFRZGZmcmCBQt4/PHH+eGHH/jss89wdnY+5fNWVFRQUVFRc1xYWNioukREzkj2Hlh8J2QeXwVw4XgY9U/tTfY7FVdU89b3h5i39iBFx/ciuzC6FQ+M7MCgdsFqfS8iIueEQwaz0tJSANzd3eucO7HE8MQ1DfXxxx/z3HPPMWLECG699dZa5wYOHMiyZctqjd15553ccccdvPHGG3z00UeMHz/+lM89e/ZsZs6c2ah6RETOmM0GG1+1z5RZK8Az0L5ZdOc/ml1Zk1ZeZeW9DSm88u0B8koqAfteZH8dmcAlnUIVyERE5JxyyHUuXl5eALVmoU4oKyurdU1DrFixggkTJtCjRw8WLlyIpYHLex577DEAPvvss9NeN336dAoKCmo+6mvJLyJyVuSnwjt/hC8etoey9iPhLxsUyn6HKquN9zemMOxf3/LUZ3vIK6kkLtibF2/ozorJgxnROUyhTEREzjmHnDGLjIwE7MsV27dvX+vc6ZY51mflypWMGTOGjh078uWXX+Lv79/gOqKjo3F2diYnJ+e017m7u9c7uycictYYBmz/GFY8ABWF4OoFlz4NvW4FhYYzYrUZLN2axgur9nM4z74KI8LfgymXtOfanlG4ODvk/12KiEgz5ZDBrE+fPrz22musW7euTjBbt24dPj4+dOz425ukfvHFF1xzzTV06NCBr7/+mqCgoEbVcfDgQaxWK+HhajUtIiYqzYPlU0+2wY/qY2+DHxRvallNldVmsHx7OnO/3s+BnBIAgn3cuXd4PDde1AZ3l1PfUywiInKuOOR/B44ePRovLy/mzp1LdXV1zXhiYiJr1qxh7NixNa3yMzIySEpKqnPP2ZdffsnVV19N+/bt+eabbwgODj7l98vMzKwzZrVamT59OgB//KOWCImISfavglf620OZxQWGPwq3rlQoOwMnZshGzvmOKQu2ciCnBH9PV/52WQJr/jaMSQPjFMpERMQ0ToZhGGYXUZ8XX3yRqVOnMnDgQCZMmEBubi5z5szB1dWVxMTEmuWOkyZN4u2332b16tUMGzYMsAe4wYMHYxgGzzzzTL2h7JcbSffs2ZOgoCAGDRpEZGQkWVlZLFy4kG3btjFmzBj+97//Ner+gsLCQvz9/SkoKMDPz+/3/UOISMtUXgBfPgo/vWM/Du4AY+ZBRA9z62qC6psh8/d05c7BcdwyIBZfD1eTKxQRkeasodnAIZcygn1PseDgYJ577jmmTp2Kl5cXI0aMYPbs2TWh7FR27txJeXk5APfff3+91/wymI0bN45PP/2Ul19+mWPHjuHl5UXXrl157bXXuOOOO3TTt4icXz+vgk8nQ6H9nlou+hNc8gS4eppaVlOjQCYiIk2Jw86YNWWaMRORM/LrWbKAOBj9MsQONLeuJkaBTEREHEmTnzETEWlR6pslu/hxcPM2t64mRIFMRESaMgUzEREzaZbsd6u22vh0Wzovr/5ZgUxERJosBTMREbNolux3qai2sujHNF797mdS88oAeyC7Y1ActwyMxU+BTEREmhAFMxGR863sGHz5GGx5136sWbJGKa2s5sNNqfx3zUEyC+2NnoK83bhtUBwT+scokImISJOkYCYicr4YBuz+BFb8DUqy7WOaJWuwwvIq3l2fwhvfHyKvpBKAcD8P7hrSlhv7tsHTTXuQiYhI06VgJiJyPhSkwWd/hX2f24+DO8BVcyGmv7l1NQF5JZW8+f0h3l6fTFF5NQBtAr3487B4xvSM1KbQIiLSLCiYiYicSzYbJL4Bq2ZCZRFYXGHwNBj8V3BxN7s6h5ZVWM68NQf5YONhyqqsALQP9eGe4e24sltrXJwtJlcoIiJy9iiYiYicK9lJsGwypG60H0f1hT/OhdBO5tbl4JJzS5i39iD/SzxCpdUGwAWR/twzvB0jO4dhsTiZXKGIiMjZp2AmInK2VVfA2udh7XNgqwI3H7jkCeh9O1g0y3MqW1PzmbfmAJ/vzMQw7GN9YgO4Z3g7hnYIwclJgUxERJovBTMRkbMpZT0smwK5e+3HHS6HK54F/yhz63JQhmHw7b4c/vPtATYeyqsZv7hjKHcPjadvXKCJ1YmIiJw/CmYiImdDyVH46nHY+p792DsURv0TOl8Nmumpo7LaxrJt6cxbc5C9WUUAuFicGN09kruGtCUh3NfkCkVERM4vBTMRkd/DZoMt78CqJ+z7kwH0nAgjZoFngKmlOaLiimoWbDrMG98fIqPAvgeZt5sz4y9qw22D4mjt72lyhSIiIuZQMBMROVMZ2+GzaXBks/047AK48nmI7mtuXQ4ou6ic+T8k896GFAqPt7wP9nHntkGx3HRRDP6e2hRaRERaNgUzEZHGKi+E1f8Hm14Dw2Zv7jH8Eeh7Fzjr1+ov7c0s4s3vD7FkaxqV1fYOi22DvblrSFuu7hGJh6v2IBMREQEFMxGRhjMM2LUYVj4MxZn2sS5j4NKnwS/C3NociM1m8N3+HN78/hBr9+fWjPdo04o/DY1nRCe1vBcREfk1BTMRkYbI3Q8rHoCD39qPA9vCqGeh3cWmluVIyiqtLN5yhDe/P8SBnBIALE4wsnM4tw+Oo3dMgFrei4iInIKCmYjI6ZQXwnf/gI3/AVs1OLvD4L/CwCng6mF2dQ4hq7Ccd9Yn88HGwxwrrQLAx92Fsb2juXVgLNGBXiZXKCIi4vgUzERE6mOzwdb34euZUJJjH2t/KVz+jH22TNiZVsAb3x9i+fZ0qqz2HaGjAjyZNCCWcX2i8fVQQw8REZGGUjATEfm11M3w+d8g/Sf7cVA7uOwZaD/C3LocgNVmsGpPFm98f4hNv9gQundMALcPimNkl3Ccdf+YiIhIoymYiYicUJhh349s+wL7sZsvDPs79L0bXNxMLc1sx0oq+SgxlXfXp5CWXwbYN4QedUFrbh8Ux4XRrcwtUEREpIlTMBMRqa6A9S/D2uegstg+1uNmuHgG+ISaW5vJdhwp4J31yXy6LZ2K4+3uW3m5cmPfNkzsH6MNoUVERM4SBTMRabkMA5I+gy8fhWOH7GNRfeDyf0BkL3NrM1FFtZXPd2Ty9vpkthzOrxnvEuHHLQNi+eOFEdp/TERE5CxTMBORlintR/jyMUj5wX7sEw4jZsIFY8FiMbc2k2QUlPHBxsN8uOkwucWVALg625crTuwfS882rdTuXkRE5BxRMBORliX/MHw9C3YstB+7eED/e2DQ/eDua25tJjAMg42H8nhnfTJf7MrCarN3Vwz38+Cmi9pwQ982hPi6m1yliIhI86dgJiItQ3mB/R6yDf8BawXgBBfeAH94DPwjza7uvCsoq2LJT0f4YNNh9mUV14xfFBfILQNiGdE5DFfnljlzKCIiYgYFMxFp3qxVkPgWfPcMlB61j8UOhpFPQUR3U0s73wzDYEtqPh9sPMzy7emUV9mbeXi6OnNNz0gm9o+hY7ifyVWKiIi0TApmItI8GQYkLbe3vz/6s30sOAFGPgntR0ILuleqsLyKpVvSeH/jYZIyi2rGE8J8GX9RG67uEYm/pzaDFhERMZOCmYg0Pwe/g69n2ht8AHgFw/CHoect4Nwyfu0ZhsH2IwV8sPEwn25Lp6zKCoC7i4Uru0Uw/qI2auYhIiLiQFrGOxQRaRnSfrI39ji42n7s6gX9/gIDp4BHy1iiV1xRzdKtaXyw8TC70gtrxtuH+jD+ojaM6RGFv5dmx0RERByNgpmINH25++GbJ2H3UvuxxRV63wZDHmgRG0QbhsFPh/NZmJjKsm3plFTaZ8fcXCxccUFrxl/Uht4xAZodExERcWAKZiLSdBWk2Zt6bHkfDCvgBN3GwfDpEBBrdnXnXHZROYt/SmNhYioHckpqxuNDvBl/UQxjekQS4O1mYoUiIiLSUApmItL0FGfDDy/Cpv8eb30PJIyCPzwKYV3Mre0cq7La+CYpm4WJqazem1Oz75inqzNXdGvN9b2i6BsXqNkxERGRJkbBTESajpJc+OEF2PQ6VJfZx9oMgEuegDYXmVnZObcvq4iPN6eyZEsaR0sqa8Z7xQQwtncUV3SLwMddv9JFRESaKv0VFxHHV3IU1h2fIasqtY9F9IThj0C7i5tt6/vC8iqWbUvn48QjbEvNrxkP8XVnTM9Iru8VTbtQH/MKFBERkbNGwUxEHFdpHqybCxvnQdXxe6giesCw6c12L7Jqq421+3NZvCWNL3dlUlFt3wTaxeLExZ1CGds7mqEdQnBxtphcqYiIiJxNCmYi4nhK82D9y7DxP1BZbB9rfaE9kHW4rNkFMsMw2JlWyOItR1i2LZ3c4pNLFduH+jCuTzRX94gk2MfdxCpFRETkXFIwExHHUZwN61+CzW+cDGThF9gDWcKoZhfI0vLL+GRLGku2pPFzdnHNeJC3G1ddGMGYnpFcEOmvRh4iIiItgIKZiJgv/zD8MBe2vAvV5faxsK4w7CFIuAIszWfZXmF5FZ/vyGDxT2lsPJRXM+7uYmFE5zDG9IxkcPsQXLVUUUREpEVRMBMR8+Tuh+/nwPaPwFZtH4vsbd8YuhktWayotvLd3hyWbktn1e6smvvGAPq1DWRMjyguuyAcPw9XE6sUERERMymYicj5l7EN1j4Pu5cC9n24iBsKg/8KcUOaRSCrttpYd+Aoy7als3JXJkXl1TXn2oX6cE2PSK7uEUlkK08TqxQRERFHoWAmIueHYUDy9/Yui/u/PDmeMAoGTYPoPubVdpbYbAabk/NYtj2dFTsyyfvFfmNhfu5c2S2Cq7tH0jXST/eNiYiISC0KZiJyblmrYfcnsO7fkLHVPuZkgS5jYND9EN7VzOp+N8Mw2HakgGXb0vlsewaZheU15wK93Rh1QThXdYugT2wgFovCmIiIiNRPwUxEzo2KIvjpXdjwChSk2sdcPKD7TdD/HgiKN7e+38EwDHalF/L5zgyWbcvgcF5pzTlfDxcu6xLOVRdGMCA+SPuNiYiISIMomInI2VWYbt9/LHE+VBTYx7yCoe9d0Od28A42tbwzZRgGW1PzWbkzk893ZtYKY56uzlzSOYyrurVmaEII7i7OJlYqIiIiTZGCmYicHelb7YFsx8KTHRaD2sOAe6HbOHBtek0ubDaDHw8fY8WODL7YmUl6wcllih6uFoZ2COHKbhFc3CkULzf9OhUREZEzp3cSInLmrFWw51PY+Bqkbjw5HjMQBtwH7S9tcnuQVVttbDqUx+c7M1m5K5Ocooqac95uzgzvGMqoC1ozLCFEYUxERETOGr2rEJHGK86GH+dD4ptQlGEfs7hCl6vhoj9DVC8zq2u08ior6w7k8uWuLL7cnVWrm6KvhwsjOoVx+QWtGdw+GA9XLVMUERGRs0/BTEQaLu1H++zYriVgPR5efMKg923QaxL4hptaXmPklVTy9Z4sVu3JYs2+XMqqrDXnArxcGdk5nMsvCGdAfDBuLk1r1k9ERESaHgUzETm9qjLY9Qlsfh3SEk+OR/WBvndD59Hg4mZaeY1xKLeEr3Znsmp3NokpediMk+da+3twSacwLusazkVxgeqmKCIiIueVgpmI1C97j3254rYPofx4d0VnN/v+YxfdBZGOv1zRZjPYkprPV7uz+Gp3JgdySmqd79zajxGdwxjROYwuEdr0WURERMyjYCYiJ1WVwe6lkPgWpG44Od6qDfS8xf7hE2JefQ1QUFbF2v05rE7K4bt92eQWn7xfzMXiRL+2QYzoHMbFnUKJCvAysVIRERGRkxTMRASyk34xO5ZvH3NyhoTLofet0PYPDttd0TAMkjKLWL03m2+Tcvjx8DGsv1ij6OvuwrCOoYzoHMbQDiH4e7qaWK2IiIhI/RTMRFqq8gJ7E4+tH9Rude/fBnpNhB4THLaZR3FFNT/8nMu3e7NZnZRDZmF5rfPtQn0YnhDCsIRQ+sQGqnmHiIiIODwFM5GWxGaFQ9/Zw9ieZVB9PNCcmB3rdSvEDweLY7WENwyDvVlFrN2Xy7f7stl0KI8q68lZMQ9XCwPig2vCWHSgliiKiIhI06JgJtIS5O63h7FtC6Ao/eR4SEfofhN0G+tws2PZheWs3Z/L9z/bP3650TNATJAXwxNCGZYQQr+2QdpfTERERJo0BTOR5qrkKOz+xB7Gjmw6Oe7RCi64HrqPh4ge4CCdCEsrq9l4KI/v9+fy/f5c9mYV1Trv4Wqhb1wQwzqEMLxjKHHB3iZVKiIiInL2KZiJNCcVRZC0Anb+Dw58A7Zq+7iTBdqNsIexhMvBxd3cOgGrzWBnWgHf/5zL2v05/JSST6XVVnPeyQm6RvgzqH0wg9sF0zMmQLNiIiIi0mwpmIk0ddUV8PMq2LEQ9q6E6rKT58K72WfHHGCpotVmsDu9kA0Hj7Lh4FE2HcqjqKK61jWRrTwZ3D6YQe2DGRAfTKB309i4WkREROT3UjATaYqsVZD8PexcBHs+PbkBNEBgPFxwHXS9DkI6mFeizWBPxskgtvFQHkXltYOYr4cL/dsGHQ9jIcQGeWmTZxEREWmRFMxEmorqCjiw2h7E9q6AsmMnz/lGQNcx9kDWursp941ZbQZJmYVsOJjH+gNH2XToKIW/DmLuLvSNC6Rf2yD6xwfRqbUfzhYFMREREREFMxFHVlkC+7+yh7F9X0LlLxpieAVDpyvtSxXbDDjvG0CXVlazNTWfxORjJKYcY0vKsTpLE33cXegTG0D/+CD6tQ2ic2s/XJy1p5iIiIjIrymYiTia0ryTYeznr2vfM+YbAZ2usn/EDDiv+43lFFXwY0oem5OPkZicx670QqptRq1rvN2c6XN8Rqxf2yC6RiiIiYiIiDSEgpmI2QwDcpJg30rY9wWkbgTjZHdCWsVA5z9Cp9EQ2eu8zIxZbQb7s4vYejifxBR7EEs+WlrnunA/D3rHBtAnNpBeMQF0DPdVEBMRERE5AwpmImaorrA379j3hT2Q5afUPh/aBTqOgk5/hPALzvk9Y5kF5WxNPcbW1AK2ph5jx5ECSiqtta5xcoKEMN9aQSyylaeadYiIiIicBQpmIudL3iE4uNq+PPHgt1BZfPKcszvEDYEOl9o/WrU5Z2WUVFSzI62Aran5bD2cz9bUfDILy+tc5+3mTLeoVvSKCaBXbAA92wTg7+l6zuoSERERackUzETOlbJ8SF5r3+j5wGo4dqj2eZ+w40Hscmg7FNy8z3oJJRXV7MkoZGdaATvT7Z/3ZRXxq1vDsDhBQrgf3aNb0T3an+7RAbQL9VHHRBEREZHzRMFM5GyxVkHajyeDWFpi7XvFLC4Q1Rfih0P7ERB+4Vm9X6ygrIpd6QXsSitkZ3oBO9MKOJhbgmHUvTbC34PubVpxYVQruke34oIof7zc9OtARERExCx6JyZypqrK7UEs5Qf7/WJHNkPVrxpkBLW3B7H4P0DsIHD3/d3f1jAM0gvKScooJCmziF3pBexMK+RwXt3mHGBv0NE10o8uEf50ibDPioX6efzuOkRERETk7FEwE2moylJ7+Er5AZJ/sH9trah9jWegfVli/B+g7XBoFf27vmVheRV7M4tIyiwiKaOQvZlF7M0qouhXGzefEB3oSdcIf7pG2kNYlwh/Qnzdf1cNIiIiInLuKZiJ1McwoCDVHr6OJELqJsjYBraq2td5h0DMQPtsWMxACOl4RssTyyqtHMgp5kBOMUmZRfYAlllEWn5Zvde7WJyID/EhIdyXrpF+dI3wp3OEH6283M7kpxURERERkymYiYB9Nixjqz2AnQhjxZl1r/ONgNiB9s2dYwZBcPsGt7I3DIO8kkp+zi7mQE7J8c/F/JxdfMoABvb7wRLCfUkI96NTa18Swn1pG+yDm4v2CxMRERFpLhTMpOWpLIHMnfYZsIxtkLkNsnaDUXvfLiwuENYVovtCVB+I6g0Bcb8ZxMoqrRzOKyXlaAnJR0s4kF1iD2A5xeSXVp3ycQFersSH+NAh3JdOx4NYQpgv/l5qUS8iIiLS3CmYSfNWmgeZO44HsO32z7n7gXpaFfqEQ3Qfe+fEqD7Q+kJw86r3aYvKq0g5WkrK0VKSj5aQcrSk5ri+PcFOcHKCqABP4kN8aBfiQ3yoD+1CfYgP8SHQW8sQRURERFoqBTNpHsryIScJsvfU/lycVf/1vq3twSu8m/1zRHfwi6yZDSuuqCYtr4y0/CzSjpVxJL+MtGNlpOWXcfhoKUdLKk9bjp+HC7HB3rQJ9CL+RAAL8SEu2BtPN+ez+7OLiIiISJPn0MHsww8/5Nlnn2X37t14e3szYsQInnnmGWJiYhr0+B9//JFHHnmE9evXY7PZ6NWrF7NmzWLIkCF1rq2srOSZZ57h7bff5siRI4SHh3PDDTcwY8YMvLzqnzWR88xaDQWHIe8g5B2Cowfs4SsnCYoyTv24gFh7+Gp9IYRfSEVIF3IMf7IKK8gqLCctp4y0/QWk5WfWhK+CslMvOTwh2MeNmCBvYoK8iAn0JjbYi5ggb2KDvNSEQ0REREQaxckw6tt+1nwvvfQS9913HwMHDuTmm28mNzeXF154AXd3dzZv3kxERMRpH79582aGDh1KaGgo9957L+7u7sybN4+kpCQ+//xzLrnkklrXX3fddSxatIgJEyYwZMgQtm3bxquvvsrQoUP56quvsDSi015hYSH+/v4UFBTg5+d3Rj9/i1VRBAVp9o6IeQdPfhw9APkpYKu/TTyA4RdJZWAChb7tyPaI47BLDD/bIjhS4kxWUTmZBeVkF1WQ9xuzXSf4e7oS2cqTyABPIlt5EnX8c5sgewDzcXfo/9cQEREREQfQ0GzgkMHs6NGjxMbG0qFDBzZu3IiLi/0NcGJiIn379uW2227j9ddfP+1z9O/fnx07drB7927atGkDQEFBAV26dMHLy4u9e/fidHzZ2hdffMFll13Gfffdx9y5c2ue47nnnuOBBx7g3Xff5eabb25w/Qpm9TAMqCyG4mz78sIT4aswDQqOHP9IhfKC0z5NtcWdfPdIslwjSXMK52cjkl1VEfxUFkpGecNnqdycLYT6uRPm50FEK89fBDAPIlt5ERngqeAlIiIiIr9bkw5mb775Jrfffjvz58/nlltuqXVu2LBh/PTTT+Tm5uLmVv8b8YMHDxIfH8+kSZN46623ap174oknmDlzJuvXr6dfv34ATJw4kXfffZfk5ORayyTLysoICgpiyJAhrFy5ssH1t4hgZq2yh6iyfPvn8mP2r8uOYRRnYS3MxlqcBcU5OJXk4FKajcV66qYYv1SINxlGEMm2UA4Z4aQYYSQb4STbwskkAINTz15anCDE1x64Qn09CPd3J8zXw358PIiF+3nQysu1JpiLiIiIiJwrDc0GDjklsGnTJgAGDBhQ59yAAQP47rvvSEpKolu3bmf0+BPXnAhmmzZtIiIios69a56ennTv3r3m+Zqa3MzDpG5bjWGzga0aw1YNNhsYVgxrNU6GFcNmBVs1FlsVluoynK3lWKrLcKouw1JdjrPVPuZsLcfNWoKHtQhPazEexmk6D2J/YdX34io13Mkx/MkgiDQjiHQjmHQjiAwjiDQjmAwjkGJO3tPn5ASBXm4EersR4+NGT293Ar3dCPJxI8jbjSAf+3GwjxuB3u608nTFYlHgEhEREZGmxSGDWVpaGgBRUVF1zp0YO3LkyCmDWUMf/8vrO3fuXO9zRUVFsX79ekpLS0/ZBKSiooKKioqa48LCwnqvO9/Sdq+jx/rJ5/R7FBqeFOJNoeFNIV7kGz7kGn7k4k+u4U+hJYBit0BKXYModw/C4u6Dn6cr/p6u+HnYP7f1dKW7p4t97Bfj/l6u+Li5KGiJiIiISLPnkMGstLQUAHd39zrnPDw8al1zNh5fWlpa77W/vv5UwWz27NnMnDnzlPWYxd0vhD2unTGcnLFhwebkjOFkwcC55usTn6ud3KiyeFBl8cDq7IHh4oHN2RPD1RPDxRPD1QvD1Rubhz94+INHKywevri6uuHp5oy3uwu+bs6Eu7ng5e6Mt5sLnq7OClUiIiIiIg3gkMHsRACqqKjA09Oz1rmysrJa1/zW43+tvsd7eXnVe21Dv9/06dOZNm1azXFhYSHR0dGnvP586dj7Yuh9sdlliIiIiIjIb3DIYBYZGQnYlxu2b9++1rnTLVOs7/G/Vt/jIyMj6732xPUBAQGnDWbu7u6nnHETERERERH5LQ3fnOs86tOnDwDr1q2rc27dunX4+PjQsWPHM378L6858XV6ejopKSm1ri0rK2Pr1q21rhURERERETnbHDKYjR49Gi8vL+bOnUt19ckNhRMTE1mzZg1jx46taZWfkZFBUlJSrXvG4uPj6du3LwsXLiQ1NbVmvLCwkDfeeIP4+PiajowA48ePB+z7lv3Sq6++SllZWaP2MBMREREREWksh9zHDODFF19k6tSpDBw4kAkTJpCbm8ucOXNwdXUlMTGxZrnipEmTePvtt1m9ejXDhg2refzGjRsZNmwYYWFhTJ48GTc3N1577TX27NnDihUrGDlyZK3vd8011/DJJ58wceJEhgwZwrZt23jllVcYPHgwX3/9NRZLwzNsi9jHTEREREREflOT3scMYMqUKQQHB/Pcc88xdepUvLy8GDFiBLNnz64JZadz0UUXsWbNGh555BGeeOIJrFYrvXv3ZtWqVbUC3AkLFixg9uzZvPPOOyxYsICwsDCmTZvGjBkzGhXKREREREREGsthZ8yaMs2YiYiIiIgINDwbaCpIRERERETEZApmIiIiIiIiJlMwExERERERMZmCmYiIiIiIiMkUzEREREREREymYCYiIiIiImIyBTMRERERERGTKZiJiIiIiIiYTMFMRERERETEZApmIiIiIiIiJlMwExERERERMZmCmYiIiIiIiMkUzEREREREREymYCYiIiIiImIyBTMRERERERGTKZiJiIiIiIiYTMFMRERERETEZApmIiIiIiIiJlMwExERERERMZmCmYiIiIiIiMkUzEREREREREymYCYiIiIiImIyBTMRERERERGTKZiJiIiIiIiYTMFMRERERETEZApmIiIiIiIiJnMxu4DmyDAMAAoLC02uREREREREzHQiE5zICKeiYHYOFBUVARAdHW1yJSIiIiIi4giKiorw9/c/5Xkn47eimzSazWYjPT0dX19fnJycTK2lsLCQ6OhoUlNT8fPzM7UWaRr0mpHG0mtGGkOvF2ksvWaksRztNWMYBkVFRURERGCxnPpOMs2YnQMWi4WoqCizy6jFz8/PIV6Y0nToNSONpdeMNIZeL9JYes1IYznSa+Z0M2UnqPmHiIiIiIiIyRTMRERERERETKZg1sy5u7szY8YM3N3dzS5Fmgi9ZqSx9JqRxtDrRRpLrxlprKb6mlHzDxEREREREZNpxkxERERERMRkCmYiIiIiIiImUzATERERERExmYKZiIiIiIiIyRTMmqkPP/yQXr164enpSXBwMDfeeCMpKSlmlyUOaN++fTz++OP069ePkJAQfH196d69O08//TQlJSVmlydNRGlpKW3btsXJyYk//elPZpcjDqqgoIDp06eTkJCAh4cHgYGBDBgwgCVLlphdmjig4uJinnzySbp27YqPjw8hISEMHDiQ9957z+zSxGSzZ8/m+uuvr/m7Exsbe9rrs7KyuO222wgLC8PDw4Nu3brx3//+9/wU2wguZhcgZ99LL73Efffdx8CBA5kzZw65ubm88MILrFmzhs2bNxMREWF2ieJA3nzzTV566SWuuuoqxo8fj5ubG6tXr+bRRx/l448/ZsOGDXh6eppdpji4xx9/nJycHLPLEAeWmprK8OHDycvL49Zbb6Vz586UlpaSlJTE4cOHzS5PHIzNZuPSSy9lw4YNTJo0icmTJ1NSUsK7777LhAkT2LdvH7NmzTK7TDHJww8/TGBgID179iQ/P/+01+bn5zNo0CDS0tKYOnUqcXFxLF26lLvuuov09HRmzJhxfopuCEOaldzcXMPHx8fo2bOnUVVVVTO+efNmw8nJybj99ttNrE4c0ebNm41jx47VGX/kkUcMwHjppZfOf1HSpPz000+Gs7Oz8eyzzxqAcffdd5tdkjigoUOHGuHh4cbhw4fNLkWagHXr1hmAMXXq1FrjpaWlRnh4uBEWFmZSZeIIDhw4UPN1ly5djJiYmFNe+9BDDxmAsWjRolrjV111leHq6mocPHjwXJXZaFrK2MwsXbqU4uJiJk+ejIvLyQnR3r17M2TIED7++GMqKytNrFAcTe/evWnVqlWd8bFjxwKwY8eO81yRNCVWq5U777yTSy+9lGuvvdbscsRBrV27lu+++46///3vREdHU11draXScloFBQUAdVb5eHp6EhAQgJeXlxlliYNo27Ztg699//33iYuLY8yYMbXGp02bRlVVFR999NHZLu+MKZg1M5s2bQJgwIABdc4NGDCAoqIikpKSzndZ0gSlpaUBEBoaanIl4sheeOEFdu/ezUsvvWR2KeLAVqxYAdjfTI0ZMwZPT098fHyIjY3Va0fq1bdvX/z8/PjnP//JwoULSU1NZc+ePdx///3s3buXJ554wuwSpQnIzMwkNTWV/v371znXv39/nJycat47OwIFs2bmxJvpqKioOudOjB05cuS81iRNj9VqZdasWbi4uHDTTTeZXY44qJSUFGbMmMFjjz1GXFyc2eWIAzvxH4J33HEHaWlpvPHGG7zzzju0bt2a++67jyeffNLkCsXRBAYG8sknn+Dv78/YsWNp06YNnTt3Zv78+SxdupSJEyeaXaI0Aad7X+zu7k5wcLBDvS9W849mprS0FLC/2H7Nw8Oj1jUipzJ58mQ2bNjAU089RUJCgtnliIP685//TExMDA888IDZpYiDKyoqAsDb25s1a9bU/I0aN24cnTt3Zvbs2dx7770EBASYWaY4mICAAHr06ME111zDgAEDyM/P59VXX2Xs2LEsWrSIyy+/3OwSxcGd7n0x2N8bO9L7Ys2YNTMn1lxXVFTUOVdWVlbrGpH6PProo7zyyivccccdPPzww2aXIw7qgw8+4PPPP+fVV1/F1dXV7HLEwZ3o7Dp+/Phab5Dc3Ny46aabKCsrY+PGjWaVJw5ox44d9O/fn0suuYR//etfXHPNNdx6662sXbuWmJgYbrvttnrf64j80uneF4P9vbEjvS9WMGtmIiMjgfqXK55uOlcE4IknnuDpp59m4sSJvPbaazg5OZldkjigyspK7r//fq688kratGlDcnIyycnJNb93ioqKSE5Orrl5X+TE353WrVvXOXdiLC8v77zWJI5tzpw5lJeXc/3119cad3d35+qrryYzM1P3zMtvOt374vLyco4ePepQ74sVzJqZPn36ALBu3bo659atW4ePjw8dO3Y832VJEzBz5kxmzpzJzTffzFtvvYXFol8PUr/S0lKys7NZvnw5cXFxNR+DBw8G7LNpcXFxvPrqqyZXKo6iX79+gH0vs187sYdZWFjYea1JHNuJ/0yuqqqqc+7EWHV19XmtSZqe8PBwoqKiWL9+fZ1zGzZswDCMmvfOjkDvvJqZ0aNH4+Xlxdy5c2v9wkpMTGTNmjWMHTsWNzc3EysURzRr1iyeeOIJbrrpJubPn69QJqfl7e3NkiVL6ny89tprAFx66aUsWbJE7fOlxujRo/Hz8+Odd96pNZNaVFTE22+/TUBAQL1d06Tl6ty5MwDz58+vNV5UVMTChQvx9vamS5cuJlQmTc348eM5dOgQixcvrjX+/PPP4+Liwrhx40yqrC4nwzAMs4uQs+vFF19k6tSpDBw4kAkTJpCbm8ucOXNwdXUlMTGxZlpXBODll1/m3nvvpU2bNsyaNQtnZ+da58PCwhgxYoRJ1UlTkpycTFxcHHfffTf/+c9/zC5HHMybb77J7bffTocOHbjjjjtwcnLijTfeYO/evcyfP19d9qSWlJQUevbsybFjxxg/fjyDBg3i2LFjvPHGGxw4cIBnn32Wv/71r2aXKSZ59913SUlJAeDf//43lZWVNa+HVq1ace+999Zce+zYMXr37k1mZiZTp04lLi6OpUuXsnz5ch577DFmzZplys9QL5M3uJZz5L333jN69OhheHh4GIGBgca4ceMcamdzcRy33HKLAZzyY+jQoWaXKE3EoUOHDMC4++67zS5FHNSnn35qDBw40PD29ja8vLyMwYMHGytWrDC7LHFQqampxl/+8hcjISHB8PT0NHx8fIxBgwYZCxYsMLs0MdnQoUNP+b4lJiamzvXp6enGpEmTjJCQEMPd3d3o0qWL8eqrr57/wn+DZsxERERERERMphtJRERERERETKZgJiIiIiIiYjIFMxEREREREZMpmImIiIiIiJhMwUxERERERMRkCmYiIiIiIiImUzATERERERExmYKZiIiIiIiIyRTMRERERERETKZgJiIiIiIiYjIFMxERafZSUlJ48MEH6dq1K0FBQbi6uhISEsLIkSNZs2ZNo55r5syZODs7s3v37nNU7ZnJyMjA09OTe+65x+xSRETkDDgZhmGYXYSIiMi5sm/fPgYPHkxOTg69evUiPj4ei8VCTk4Omzdv5uGHH+Zvf/tbg54rKyuLdu3accUVV7BgwYJzXHnjTZkyhVdeeYWdO3eSkJBgdjkiItIICmYiItKs3Xnnnbz++uvMmzePO++8s9a5iooK8vPzCQsLa9BzTZkyhblz57J161YuvPDCc1Hu75KWlkabNm247rrr+Oijj8wuR0REGkFLGUVEpFk7cOAAAElJSZSUlNQ65+7u3uBQVlpayttvv023bt0cMpQBREZGMnz4cJYsWUJWVpbZ5YiISCMomImISLM2ZcoU3NzceP755wkODmbYsGH83//9H5mZmY16noULF1JQUMBNN91U51xycjJOTk4MGzaMsrIyHnroIWJiYnB3d6ddu3b84x//4NcLVH75mJKSEqZNm0Z0dDSenp707NmTZcuW1freffv2xdvbm7CwMCZPnkxZWVm9dY4fP56qqirmz5/fqJ9PRETMpWAmIiLNWmVlJQEBAUyYMIFx48Zx4MABHnnkERISEvj8888b/DzLly8HYNiwYaf9XiNHjmTevHl06tSJ4cOHk5aWxkMPPcRjjz12ysdcfPHFvPvuu3Tv3p1+/fqxbds2rrnmGlatWsWcOXMYP348Li4ujBw5EqvVyr///W/uuOOOep/vRH2fffZZg382ERExn+4xExGRZuuVV17h3nvv5b333mP8+PE1448++ihPP/00gYGBJCcn4+vr+5vP1bp1a44ePUpRURHu7u61ziUnJxMXFwfA4MGDWbx4McHBwQAkJibSv39/3NzcyMrKwsfHp85jhg0bxuLFiwkICABg/vz53HrrrbRr1468vDw++eQTBg8eDEB6ejo9evQgOzubAwcO0LZt2zq1hoSEUFRUREFBQZ1aRUTEMWnGTEREmqXNmzczefJkJkyYUCuUATz11FN06dKFvLy8BrXLz87OJjMzk9jY2NMGHYvFwuuvv14TygB69+7N5ZdfTmlpKYmJiXUe4+zszH//+9+aUAYwceJEQkJC+Pnnn7n33ntrQhlAREREzXLKU9WekJBARUUFe/fu/c2fTUREHIOCmYiINEt///vfsVqtp2yF361bNwDy8vJ+87mys7MBaoWn+sTGxtKhQ4c64yfGMjIy6n1Mu3btao1ZLBZiYmIAGDFiRJ3HxMfHn/L5AAIDAwHIyck5bb0iIuI4FMxERKTZyczMZPXq1cTGxtKlS5d6rykoKACoNbt1Kieu/a0lj1FRUfWOn1i+WFFRUedcZGRkvY/x9vY+5fkT5+p7PgA/Pz/gZN0iIuL4FMxERKTZ+emnnwDo1atXveetViubNm0CaFDre39/fwAKCwtPe52Tk1NjymzQY87kOU8EshN1i4iI41MwExGRZufE0sMTM0e/tmbNGnJzc+nRowcRERG/+XyhoaFAw5Y9OoJjx44B9iYgIiLSNCiYiYhIs3NiyeHBgwfrnKuurubBBx8E7HucNURoaCjh4eGkpKSccv8wR5KUlISHhwcJCQlmlyIiIg2kYCYiIs1O//79cXFxYe3atXzzzTc14+Xl5dx11138+OOPDB8+nIkTJzb4OQcPHkx1dTVbtmw5FyWfNQcOHODo0aP07dtXrfJFRJoQBTMREWl2IiIimDZtGjabjUsvvZTLLruMsWPHEhcXx1tvvcWgQYNYtGhRo+7fuuKKKwBYvXr1uSr7rPj2228BGDVqlLmFiIhIoyiYiYhIszR79mzmzp1Lp06d+O6771i5ciXx8fHMmzeP1atX/2br+18bO3Ys/v7+fPDBB+eo4rPjgw8+wNXVlUmTJpldioiINIKTYRiG2UWIiIg0Bffffz8vvPACP/74Iz179jS7nDqOHDlCTEwM1113HR999JHZ5YiISCNoxkxERKSBpk+fjo+PD88884zZpdTrX//6FxaLhVmzZpldioiINJKCmYiISAOFhoby4IMPsmjRInbv3m12ObVkZGQwb9487rzzTnVjFBFpgrSUUURERERExGSaMRMRERERETGZgpmIiIiIiIjJFMxERERERERMpmAmIiIiIiJiMgUzERERERERkymYiYiIiIiImEzBTERERERExGQKZiIiIiIiIiZTMBMRERERETGZgpmIiIiIiIjJFMxERERERERM9v9ZD6SBveW5QwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import matplotlib.patches as mpatches\n",
"from myst_nb import glue\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot()\n",
"\n",
"\n",
"s = 0.0\n",
"delta = np.linspace(0, 10, 1000)\n",
"alpha2 = 100\n",
"y0 = 600\n",
"SNR_vac = 4*np.pi**2*delta**2*alpha2/(y0**2*(1 + 4*s**2 - 2*np.sqrt(2*(1 - s**2))*s))\n",
"\n",
"s = 0.3\n",
"SNR_sqz = 4*np.pi**2*delta**2*alpha2/(y0**2*(1 + 4*s**2 - 2*np.sqrt(2*(1 - s**2))*s))\n",
"\n",
"ax.plot(delta, SNR_vac, label=\"s = 0.0\")\n",
"ax.plot(delta, SNR_sqz, label=\"s = 0.3\")\n",
"ax.axhline(1.0, color=\"black\", linestyle=\"--\", label=\"SNR = 1\")\n",
"\n",
"#ax.set_ylim(0, 1.55)\n",
"ax.set_xlabel(r'$\\delta$ (nm)', fontsize=15)\n",
"ax.set_ylabel(r'SNR', fontsize=15)\n",
"ax.tick_params(labelsize=13) \n",
"ax.legend(fontsize=15)\n",
" \n",
"#plt.gca().set_aspect('equal')\n",
"\n",
"fig.set_size_inches(10, 10)\n",
"\n",
"glue(\"displacement_LOD_squeezed_state\", fig, display=False)"
]
},
{
"cell_type": "markdown",
"id": "1f478b61-1991-4990-980b-59d19c04b6d5",
"metadata": {},
"source": [
"```{glue:figure} displacement_LOD_squeezed_state\n",
":figwidth: 600px\n",
":name: \"fig-displacement-LOD-squeezed-state\"\n",
"\n",
"Signal to noise ratio of the homodyne output from an interferometer for measuremetn of displacement $\\delta$ both with squeezing ($s = 0.3$) and without ($s = 0$). Clearly, a squeezed state reduces the limits of detection beyond what is capable with purely classical input states. This reduction can be further enhanced with states exhibiting larger amounts of squeezing than what we used here for this example. \n",
"```"
]
},
{
"cell_type": "markdown",
"id": "9970d8de-4d63-4126-bd1a-5d611a9c062b",
"metadata": {},
"source": [
"By using advanced methods that produce squeezed states with much higher levels of squeezing than our toy state here, this can be even further improved. As with all other examples, though, one must ensure that quantum fluctuations are the dominant source of noise. **The limit in real life can often be set by thermal, mechanical, and other technical noise taht is not quantum in nature.** There must also be significant engineering introduced to reduce these noise factors."
]
}
],
"metadata": {
"jupytext": {
"formats": "ipynb,markdown//md:myst"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}